Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom Vol. 29, Fasc. 1
135--154
EN
Nested subclasses, denoted by Mn(Rd); n = 1; 2,…,of the class M(Rd), a subclass of the class of type G and selfdecomposable distributions on Rd are studied. An analytic characterization in terms of Lévy measures and a probabilistic characterization by stochastic integral representations for M(Rd) are known. In this paper, analytic characterizations for Mn(Rd); n = 1; 2,…,are given in terms of Lévy measures as well as probabilistic characterizations by stochastic integral representations are shown. A relationship with stable distributions is given.
EN
Gamma distributions can be characterized as the laws of stochastic integrals with respect to many different Lévy processes with different nonrandom integrands. A Lévy process corresponds to an infinitely divisible distribution. Therefore, many infinitely divisible distributions can yield a gamma distribution through stochastic integral mappings with different integrands. In this paper, we pick up several integrands which have appeared in characterizing well-studied classes of infinitely divisible distributions, and find inverse images of a gamma distribution through each stochastic integral mapping. As a by-product of our approach to stochastic integral representations of gamma random variables, we find a remarkable new general characterization of classes of infinitely divisible distributions, which were already considered by James et al. (2008) and Aoyama et al. (2010) in some special cases.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.