Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A simple approximation of the effective magnetostriction of nanocrystalline magnetes which takes into account the magnetoelastic interactions developing at the interface of the nanocrystalline grains and the amorphous matrix is proposed. This approximation is applied to the analysis of the existing experimental data of the effective magnetostriction in FeCuNbSiB and FeZrBCu nanocrystalline materials.The concept of the interface magnetoelastic properties of an isolated spherical nanoparticle based on the magnetic dopole-dipole interactions.
EN
Purpose: The aim of this work is to obtain polyurethane matrix composite materials reinforced by Tb0.3Dy0.7Fe1.9particles and to observe changes of magnetic properties and magnetostriction of samples with different particle size distributions of Tb0.3Dy0.7Fe1.9 powder. Design/methodology/approach: Polyurethane matrix composite materials reinforced by Tb0.3Dy0.7Fe1.9 magnetostrictive particles fabricating method were developed during the investigations, making possible to obtain materials with good physical properties. The influence of the concentration and powder particles size of the Td0.3Dy0.7Fe1.9 on magnetic and magnetostrictive properties were estimated. Metallographic examination of powders morphology and the structure observations of composite materials were made. Findings: Composite materials consisting of Td0.3Dy0.7Fe1.9 particles can extend the possibilities of application the magnetostrictive materials and reduce the cost of their manufacturing. The obtained materials show regular distribution of Td0.3Dy0.7Fe1.9 powder in polyurethane matrix. Research limitations/implications: The advantage of polyurethane matrix magnetostrictive composite materials are their simple technology and lowering manufacturing cost in comparison to monolithic Td0.3Dy0.7Fe1.9. These efforts can be considered as very up-to-date from the scientific point of view. Originality/value: The originality of this investigations is the statement that increasing the size of the Td0.3Dy0.7Fe1.9 particles cause increasing the strain response and this is due to the demagnetization effects.
EN
In this work hyperfine fields of two-phase nanocrystalline Fe72Cu1.5Nb4Si13.5B9 alloys were studied in order to verify the existence of surface effects. To obtain a series of nanocrystalline samples with small grains of different sizes, a special non- -isothermal annealing procedure of an initially amorphous ribbon was applied. In the case of samples with a significant amount of crystallites, a high field (about 27.5 T) component of continuous part of the hyperfine field distribution was found that could be attributed to boundary regions between the grains and rest of the sample. The existence of the surface effects was confirmed in the magnetostrictive experiment.
EN
Fe20/Cu/Fe80B20 trilayers were deposited onto bowed glass substrates using the RF sputtering technique. On removing the trilayerssystem from the sputtering chamber, a magnetoelestic uniaxial in-plane anisotropy was induced due to the compressive stress developed when the substrates recovered their initial shape. For the one type of the sample the permanent stress was applied in both FeB bottom and top layer in the same directions (parallel to the longer axis of the glass slide). For the second type of the sample the stress was applied for the bottom FeB layer under +21° and top layer under - 21° angle (with respect to the longer axis of the glass slide). It was found, using Kerr magnetometry, that due to the positive magnetostriction nature of the FeB layers the directions of the easy axis have been induced separately in each FeB sublayer. The magnetic and magnetoelastic properties of these samples are discussed.
PL
Oddziaływania magnetosprężyste umożliwiają indukowanie magnetycznej anizotropii jednoosiowej przez zastosowanie zewnętrznych naprężeń w układach wielowarstwowych. Na przykładzie trójwarstwowego układu Fe80B20(500 Å)/ Cu(40A)/Fe80B20(500 Å) złożonego z amorficznych warstw stopu FeB i polikrystalicznej przekładki Cu badano magnetyczne oddziaływanie międzywarstwowe i efekt anizotropii jednoosiowej. Warstwy nanoszono metodą zmienno-prądowego (RF) rozpylenia jonowego na wygięte podłoża szklane o wymiarach (50x22x0.15 mm). Warstwy zabezpieczono przed utlenianiem nanosząc na końcu 20 Å warstwę Cu. Wygięcie podłoża było precyzyjnie regulowane i zapewniało dodatnie naprężenie 3.5x10-4 powierzchni szkła, na którą nanoszono układ trójwarstwowy. Po zakończeniu nanosze nia układ wielowarstwowy powracał do pozycji płaskiej. Dwa typy próbek poddano badaniom. Dla pierwszego rodzaju (ang.0) naprężenie ściskające było przyłożone w kierunku dłuższej krawędzi podłoża podczas nanoszenia zarówno górnej, jak i dolnej warstwy FeB. Natomiast dla drugiego ro dzaju próbek (ang.21) naprężenie ściskające przyłożono pod kątem +21° podczas nanoszenia dolnej warstwy FeB i -21° podczas nanoszenia warstwy górnej (kąt liczony względem dłuższej krawędzi podłoża). Próbki scharakteryzowano strukturalnie stwierdzając stan amorficzny warstw Fe80B20 za pomocą dyfrakcji rentgenowskiej i spektroskopii mossbauerowskiej elektronów konwersji (CEMS). Wykaza no, za pomocą pomiarów pętli histerezy, otrzymanych z magnetooptycznego efektu Kerra (MOKE), że poprzez dodat nią magnetostrykcję Fe80B20, w wyniku oddziaływania magnetoelastycznego podczas procesu nanoszenia w każdej warstwie niezależnie od kierunku przyłożonych naprężeń indukuje się jednoosiowa anizotropia magnetyczna. Pomiary magnetostrykcji, magnetorezystancji i namagnesowania potwierdzają silną anizotropię jednoosiową w badanych układach trójwarstwowych.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.