The cardinal of the finitely generated free (n + l)-valued Lukasiewicz BCK- algebras has been determined by different authors only for some values of n. In this article we find the formula that allows its calculus for every value of n. By the application of this formula for n = 1, n = 2, we corroborate the results obtained by L. Iturrioz and A. Monteiro (Rev. Un. Mat. Argentina, 22 (1966), 146) and L. Iturrioz and O.Rueda (Discrete Math., 18 (1977), 35-44). In addition we generalize the results found by A. V. Figallo (Rev. Un. Mat. Argentina, 41, 4 (2000), 33-43).
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Łukasiewicz residuation algebras with an underlying ordered structure of meet semilattice (or iŁR-algebras) are studied. These algebras are the algebraic counter-part of the {->, lambda}-fragment of Łukasiewicz's many-valued logie. An equational basis for this class of algebras is shown. In addition, the subvariety of (n + 1)-valued iŁR-algebras for O < n < u is considered. In particular, the structure of the free finitely generated (n + 1)-valued iŁR-algebra is described. Moreover, a formuła to compute its cardinal number in terrns of n and the number of free generators is obtained.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.