Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper, an algorithm that monitors the power system to detect and classify power quality events in real time is presented. The algorithm is able to detect events caused by waveform distortions and variations of the RMS values of the voltage. Detection of the RMS events is done by comparing the RMS values with certain thresholds, while detection of waveform distortions is made using an algorithm based on multiharmonic leasts-squares fitting.
2
Content available DSPIC - Based impedance measuring instrument
100%
EN
An implemented impedance measuring instrument is described in this paper. The device uses a dsPIC (Digital Signal Peripheral Interface Controller) as a processing unit, and a DDS (Direct Digital Synthesizer) to stimulate the measurement circuit composed by the reference impedance and the unknown impedance. The voltages across the impedances are amplified by programmable gain instrumentation amplifiers and then digitized by analog to digital converters. The impedance is measured by applying a seven-parameter sine-fitting algorithm to estimate the sine signal parameters. The dsPIC communicates through RS-232 or USB with a computer, where the measurement results can be analyzed. The device also has an LCD to display the measurement results.
EN
This paper describes a new method for detection of some power quality (PQ) disturbances, namely transients and waveform distortions. The proposed algorithm is based on a modified version of the four-parameter sine-fitting algorithm. The sine-fitting algorithm is used to estimate the parameters of the power system's voltage signal's fundamental and to extract the transient component of the voltage. The performance of the proposed method is compared with previously developed algorithm and with two commercial PQ analyzers.
EN
In this paper, a comparison analysis of three different algorithms for the estimation of sine signal parameters in two-channel common frequency situations is presented. The relevance of this situation is clearly understood in multiple applications where the algorithms have been applied. They include impedance measurements, eddy currents testing, laser anemometry and radio receiver testing for example. The three algorithms belong to different categories because they are based on different approaches. The ellipse fit algorithm is a parametric fit based on the XY plot of the samples of both signals. The seven parameter sine fit algorithm is a least-squares algorithm based on the time domain fitting of a single tone sinewave model to the acquired samples. The spectral sinc fit performs a fitting in the frequency domain of the exact model of an acquired sinewave on the acquired spectrum. Multiple simulation situations and real measurements are included in the comparison to demonstrate the weaknesses and strong points of each algorithm.
EN
This paper describes the prototype of a power quality analyzer designed for real-time detection and classification of disturbances that occur in a single-phase power system. The standalone DSP-based analyzer implements previously developed algorithms for detection and classification of power quality disturbances such as transients, waveform distortions, sags, swells and interruptions. Its performance was verified during long term monitoring of the power system.
EN
The quality of the supplied power by electricity utilities is regulated and of concern to the end user. Power quality disturbances include interruptions, sags, swells, transients and harmonic distortion. The instruments used to measure these disturbances have to satisfy minimum requirements set by international standards. In this paper, an analysis of multi-harmonic least-squares fitting algorithms applied to total harmonic distortion (THD) estimation is presented. The results from the different least-squares algorithms are compared with the results from the discrete Fourier transform (DFT) algorithm. The algorithms are assessed in the different testing states required by the standards.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.