We review infinite divisibility and Lévy processes in Banach spaces and discuss the relationship with notions of type and cotype. The Lévy-Itô decomposition is described. Strong, weak and Pettis-style notions of stochastic integral are introduced and applied to construct generalised Ornstein-Uhlenbeck processes
We introduce "probabilistic" and "stochastic Hilbertian structures". These seem to be a suitable context for developing a theory of "quantum Gaussian processes". The Schauder system is utilised to give a Levy-Ciesielski representation of quantum (bosonic) Brownian motion as operators in Fock space over a space of square summable sequences. Similar results hold for non-Fock, fermion, free and monotone Brownian motions. Quantum Brownian bridges are defined and a number of representations of these are given.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.