Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom Vol. 49, No. 1
55--61
EN
Precise Point Positioning (PPP) has been used for the last decade as a cost-effective alternative for the ordinary DGPS-Differential GPS with an estimated precision sufficient for many applications. PPP requires handling different types of errors using proper models. PPP precision varies with the use of observations from different satellite systems (GPS, GLONASS and mixed GPS/GLONASS) and the duration of observations. This research presents an evaluation study for the variability of Static-PPP precision based on different observation types (GPS, GLONASS and mixed observations) and observation duration. It can be concluded that Static-PPP solution using mixed observations is offering similar accuracy as the one using GPS-only observations and saving 15 minutes observation time. For 30 minutes of observation duration, mixed observations offers improvement percentages of 14%, 26% and 25% for latitude, longitude and height respectively.
EN
Tropospheric delay is the second major source of error after the ionospheric delay for satellite navigation systems. The transmitted signal could face a delay caused by the troposphere of over 2m at zenith and 20m at lower satellite elevation angles of 10 degrees and below. Positioning errors of 10m or greater can result from the inaccurate mitigation of the tropospheric delay. Many techniques are available for tropospheric delay mitigation consisting of surface meteorological models and global empirical models. Surface meteorological models need surface meteorological data to give high accuracy mitigation while the global empirical models need not. Several hybrid neutral atmosphere delay models have been developed by (University of New Brunswick, Canada) UNB researchers over the past decade or so. The most widely applicable current version is UNB3m, which uses the Saastamoinen zenith delays, Niell mapping functions, and a look-up table with annual mean and amplitude for temperature, pressure, and water vapour pressure varying with respect to latitude and height. This paper presents an assessment study of the behaviour of the UNB3m model compared with highly accurate IGS-tropospheric estimation for three different (latitude/height) IGS stations. The study was performed over four nonconsecutive weeks on different seasons over one year (October 2014 to July 2015). It can be concluded that using UNB3m model gives tropospheric delay correction accuracy of 0.050m in average for low latitude regions in all seasons. The model's accuracy is about 0.075m for medium latitude regions, while its highest accuracy is about 0.014m for high latitude regions.
3
Content available remote Digital Road Profile using kinematic GPS
100%
EN
A Digital Road Profile (DRP) is a digital representation of road surface topography or terrain in the longitudinal direction. The need for accurate DRP is vital in two stages; before the road construction starts and after the road construction finished where the verification of its geometrical characteristics is essential for engineering safety purposes. Classical surveying techniques are traditionally used for the DRP generation with limitation of high-cost and time-waste. Kinematic DGPS or Real Time Kinematic DGPS positioning can provide accurate enough results for such application. This paper presents an assessment study of using kinematic GPS technique for DRP generation comparing with classical survey in south Egypt. The results shows that, vehicle-GPS system used in combination with post processing kinematic DGPS gave satisfactory accuracy for nearly all points for a distance of nearly 2 km. with max. and min. difference not more than 7.7 cm, a mean value of 0.10 cm and a Root Mean Square RMS value of 4.11 cm.
4
Content available remote Positional accuracy assessment of googleearth in Riyadh
63%
|
|
tom Vol. 49, No. 2
101--106
EN
Google Earth is a virtual globe, map and geographical information program that is controlled by Google corporation. It maps the Earth by the superimposition of images obtained from satellite imagery, aerial photography and GIS 3D globe. With millions of users all around the globe, GoogleEarth® has become the ultimate source of spatial data and information for private and public decision-support systems besides many types and forms of social interactions. Many users mostly in developing countries are also using it for surveying applications, the matter that raises questions about the positional accuracy of the Google Earth program. This research presents a small-scale assessment study of the positional accuracy of GoogleEarth® Imagery in Riyadh; capital of Kingdom of Saudi Arabia (KSA). The results show that the RMSE of the GoogleEarth imagery is 2.18 m and 1.51 m for the horizontal and height coordinates respectively.
5
Content available remote Accuracy assessment of Digital Elevation Models using GPS
51%
EN
A Digital Elevation Model (DEM) is a digital representation of ground surface topography or terrain with different accuracies for different application fields. DEM have been applied to a wide range of civil engineering and military planning tasks. DEM is obtained using a number of techniques such as photogrammetry, digitizing, laser scanning, radar interferometry, classical survey and GPS techniques. This paper presents an assessment study of DEM using GPS (Stop&Go) and kinematic techniques comparing with classical survey. The results show that a DEM generated from (Stop&Go) GPS technique has the highest accuracy with a RMS error of 9.70 cm. The RMS error of DEM derived by kinematic GPS is 12.00 cm.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.