This work concerns the study of asymptotic behavior of coupled systems of p(x)-Laplacian differential inclusions. We obtain that the generalized semiflow generated by the coupled system has a global attractor, we prove continuity of the solutions with respect to initial conditions and a triple of parameters and we prove upper semicontinuity of a family of global attractors for reaction-diffusion systems with spatially variable exponents when the exponents go to constants greater than 2 in the topology of [formula] and the diffusion coefficients go to infinity.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.