This paper shows that analysis of risk sources and identification of cause-effect relationships are crucial elements of the operational risk management process. Knowledge of the reasons and consequences of risk materialization is key for reliable forecasting of the effects of managerial actions and for planning interventions capable of shaping the reality according to expectations. The article concentrates on presenting one means of analyzing causal chains – Bayesian networks that can help banks understand the nature of operational risk, minimizing its scale, and, as a result, increasing the financial institutions’ efficiency. The definition, design rules, ways of using the method to analyze cause-effect relationships between operational risk factors, as well as advantages and drawbacks of the approach, are discussed.
PL
W niniejszym artykule autor próbuje wykazać, że w procesie zarządzania ryzykiem operacyjnym w banku szczególnie istotne jest przeprowadzenie analizy źródeł ryzyka wraz z rozpoznaniem zależności przyczynowo- skutkowych. Jedynie gruntowna wiedza o powodach i konsekwencjach materializacji ryzyka daje bowiem szansę skutecznego prognozowania efektów podejmowanych działań zarządczych, planowania interwencji i poprzez to kształtowania rzeczywistości zgodnie z oczekiwaniami. Artykuł koncentruje się na zaprezentowaniu narzędzia badania łańcuchów przyczynowych – sieci Bayesa, które mogą pomóc bankom lepiej zrozumieć naturę ryzyka operacyjnego, zmniejszyć jego skalę i w efekcie zwiększyć efektywność działania instytucji. Zaprezentowana zostanie definicja, zasady konstrukcji, sposoby wykorzystania tej metody do analizy zależności przyczynowo-skutkowych pomiędzy czynnikami ryzyka operacyjnego, a także zalety i wady tego podejścia.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.