Regular fully filled antenna arrays have been widely used in direction of arrival (DOA) estimation. However, practical implementation of these arrays is rather complex and their resolutions are limited to the beamwidth of the array pattern. Therefore, higher resolution and simpler methods are desirable. In this paper, the compressed sensing method is first applied to an initial fully filled array to randomly select the most prominent and effective elements which are used to form the sparse array. To keep the dimension of the sparse array equal to that of the fully filled array, the first and the last elements were excluded from the sparseness process. In addition, some constraints on the sparse spectrum are applied to increase estimation accuracy. The optimization problem is then solved iteratively using the iterative reweighted l1 norm. Finally, a simple searching algorithm is used to detect peaks in the spectrum solution that correspond to the directions of the arriving signals. Compared with the existing scanned beam methods, such as the minimum variance distortionless response (MVDR) technique, and with subspace approaches, such as multiple signal classification (MUSIC) and ESPIRT algorithms, the proposed sparse array method offers better performance even with a lower number of array elements and in severely noisy environments. Effectiveness of the proposed sparse array method is verified via computer simulations.
A monopulse searching and tracking radar antenna array with a large number of radiating elements requires a simple and efficient design of the feeding network. In this paper, an effective and versatile method for jointly optimizing the sum and difference patterns using the genetic algorithm is proposed. Moreover, the array feeding network is simplified by attaching a single common weight to each of its elements. The optimal sum pattern with the desired constraints is first generated by independently optimizing amplitude weights of the array elements. The suboptimal difference pattern is then obtained by introducing a phase displacement π to half of the array elements under the condition of sharing some sided elements weights of the sum mode. The sharing percentage is controlled by the designer, such that the best performance can be met. The remaining uncommon weights of the difference mode represent the number of degrees of freedom which create a compromise difference pattern. Simulation results demonstrate the effectiveness of the proposed method in generating the optimal sum and suboptimal difference patterns characterized by independently, partially, and even fully common weight vectors.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.