Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Computing Maximal Error-detecting Capabilities and Distances of Regular Languages
100%
EN
A (combinatorial) channel consists of pairs of words representing all possible inputoutput channel situations. In a past paper, we formalized the intuitive concept of "largest amount of errors" detectable by a given language L, by defining the maximal error-detecting capabilities of L with respect to a given class of channels, and we showed how to compute all maximal error-detecting capabilities (channels) of a given regular language with respect to the class of rational channels and a class of channels involving only the substitution-error type. In this paper we resolve the problem for channels involving any combination of the basic error types: substitution, insertion, deletion. Moreover, we consider the problem of finding the inverses of these channels, in view of the fact that L is error-detecting for γif and only if it is error-detecting for the inverse of γ. We also discuss a natural method of reducing the problem of computing (inner) distances of a given regular language L to the problem of computing maximal error-detecting capabilities of L
2
Content available remote Fuzzification of Rational and Recognizable Sets
80%
EN
In this paper we present a different framework for the study of fuzzy finite machines and their fuzzy languages. Unlike the previous work on fuzzy languages, characterized by fuzzification at the level of their acceptors/generators, here we follow a top-down approach by starting our fuzzification with more abstract entities: monoids and particular families in monoids. Moreover, we replace the unit interval (in fact, a finite subset of the unit interval) as support for fuzzy values with the more general structure of a lattice. We have found that completely distributive complete lattices allow the fuzzification at the highest level, that of recognizable and rational sets. Quite surprisingly, the fuzzification process has not followed thoroughly the classical (crisp) theory. Unlike the case of rational sets, the fuzzification of recognizable sets has revealed a few remarkable exceptions from the crisp theory: for example the difficulty of proving closure properties with respect to complement, meet and inverse morphisms. Nevertheless, we succeeded to prove the McKnight and Kleene theorems for fuzzy sets by making the link between fuzzy rational/recognizable sets on the one hand and fuzzy regular languages and FT-NFA languages (languages defined by NFA with fuzzy transitions) on the other. Finally, we have drawn the attention to fuzzy rational transductions, which have not been studied extensively and which bring in a strong note of applicability.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.