Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Blending Timed Formal Models with Clock Transition Systems
100%
EN
Networks of Timed Automata (NTA) and Time Petri Nets (TPNs) are well-established formalisms used to model, analyze and control industrial real-time systems. The underlying theories are usually developed in different scientific communities and both formalisms have distinct strong points: for instance, conciseness for TPNs and a more flexible notion of urgency for NTA. The objective of the paper is to introduce a new model allowing the joint use of both TPNs and NTA for the modeling of timed systems. We call it Clock Transition System (CTS). This new model incorporates the advantages of the structure of Petri nets, while introducing explicitly the concept of clocks. Transitions in the network can be guarded by an expression on the clocks and reset a subset of them as in timed automata. The urgency is introduced by a separate description of invariants. We show that CTS allow to express TPNs (even when unbounded) and NTA. For those two classical models, we identify subclasses of CTSs equivalent by isomorphism of their operational semantics and provide (syntactic) translations. The classical state-space computation developed for NTA and then adapted to TPNs can easily be defined for general CTSs. Armed with these merits, the CTS model seems a good candidate to serve as an intermediate theoretical and practical model to factor out the upcoming developments in the TPNs and the NTA scientific communities.
2
Content available remote Interrupt Timed Automata with Auxiliary Clocks and Parameters
100%
EN
Interrupt Timed Automata (ITA) are an expressive timed model, introduced to take into account interruptions according to levels. Due to this feature, this formalism is incomparable with Timed Automata. However several decidability results related to reachability and model checking have been obtained. We add auxiliary clocks to ITA, thereby extending its expressive power while preserving decidability of reachability. Moreover, we define a parametrized version of ITA, with polynomials of parameters appearing in guards and updates. While parametric reasoning is particularly relevant for timed models, it very often leads to undecidability results. We prove that various reachability problems, including robust reachability, are decidable for this model, and we give complexity upper bounds for a fixed or variable number of clocks, levels and parameters.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.