Given a von Neumann algebra M we consider its central extension E(M). For type I von Neumann algebras, E(M) coincides with the algebra LS(M) of all locally measurable operators affiliated with M. In this case we show that an arbitrary automorphism T of E(M) can be decomposed as $T = T_{a} ∘ T_{ϕ}$, where $T_{a}(x) = axa^{-1}$ is an inner automorphism implemented by an element a ∈ E(M), and $T_{ϕ}$ is a special automorphism generated by an automorphism ϕ of the center of E(M). In particular if M is of type $I_{∞}$ then every band preserving automorphism of E(M) is inner.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Given a von Neumann algebra M, we consider the central extension E(M) of M. We introduce the topology t c(M) on E(M) generated by a center-valued norm and prove that it coincides with the topology of local convergence in measure on E(M) if and only if M does not have direct summands of type II. We also show that t c(M) restricted to the set E(M)h of self-adjoint elements of E(M) coincides with the order topology on E(M)h if and only if M is a σ-finite type Ifin von Neumann algebra.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.