The intersection L of two different non-opposite hemispheres of the unit sphere S2 is called a lune. By Δ(L) we denote the distance of the centers of the semicircles bounding L. By the thickness Δ(C) of a convex body C ⊂ S2 we mean the minimal value of Δ(L) over all lunes L ⊃ C. We call a convex body R ⊂ S2 reduced provided Δ(Z) < Δ(R) for every convex body Z being a proper subset of R. Our aim is to estimate the diameter of R, where Δ(R) < π/2, in terms of its thickness.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.