Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Depletion of fossil fuel based energy sources drive the present scenario towards development of solar based alternative energy. Polycrystalline silicon solar cells are preferred due to low cost and abundant availability. However, the power conversion efficiency of polycrystalline silicon is lesser compared to monocrystalline one. The present study aims at analyzing the effect of calcium titanium oxide (CaTiO3) antireflection (AR) coating on the power conversion of polycrystalline solar cells. CaTiO3 offers unique characteristics, such as non-radioactive and non-magnetic orthorhombic biaxial structure with bulk density of 3.91 g/cm3. CaTiO3 film deposition on the solar cell substrate has been carried out using Radio Frequency (RF) magnetron sputter coating technique under varying time durations (10 min to 45 min). Morphological studies proved the formation of CaTiO3 layer and respective elemental percentages on the coated substrate. Open circuit voltage studies were conducted on bare and coated silicon solar substrates under open and controlled atmospheric conditions. CaTiO3 coated on a solar cell substrate in a deposition time of 30 min showed 8.76 % improvement in the cell voltage compared to the bare solar cell.
EN
This paper reports the application of poly(azomethinethioamide) (PATA) resin having the pendent chlorobenzylidine ring for the removal of heavy metal ions such as Zn(II) and Ni(II) ions from the aqueous solutions by adsorption technology. Kinetic, equilibrium and thermodynamic models for Zn(II) and Ni(II) ions adsorption were applied by considering the effect of contact time, initial metal ion concentration and temperature data, respectively. The adsorption influencing parameters for the maximum removal of metal ions were optimized. Adsorption kinetic results followed the pseudo-second order kinetic model based on the correlation coefficient (R2) values and closed approach of experimental and calculated equilibrium adsorption capacity values. The removal mechanism of metal ions by PATA was explained with the Boyd kinetic model, Weber and Morris intraparticle diffusion model and Shrinking Core Model (SCM). Adsorption equilibrium results followed the Freundlich model based on the R2 values and error functions. The maximum monolayer adsorption capacity of PATA for Zn(II) and Ni(II) ions removal were found to be 105.4 mg/g and 97.3 mg/g, respectively. Thermodynamic study showed the adsorption process was feasible, spontaneous, and exothermic in nature.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.