Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Multi-million tons of sludge produced as a result of wet dedusting of blast furnace and converter gases have been deposited in landfills across the country. These materials are also created on an ongoing basis. Due to the high iron content, their potential as a ferrous raw material is significant. Unfortunately, in addition to components which are desirable from the point of view of metallurgical processes such as Fe, C and CO, they also contain many harmful elements such as Zn, Pb, Na and K. The article describes the sources and form of Zn found in post-production waste of steelworks and the methods of removing zinc from ferrous waste materials. The optimal conditions for zinc removal during the sintering process of galvanised ferrous materials were identified using thermochemical calculations carried out with the FactSage computer program.
PL
Na terenie kraju na składowiskach zdeponowano wielomilionowe ilości ton szlamów powstałych w wyniku mokrego odpylania gazów wielkopiecowych i konwertorowych. Materiały te powstają także na bieżąco. Z uwagi na dużą zawartość żelaza ich potencjał jako surowca żelazonośnego jest znaczący. Niestety oprócz pożądanych składników z punktu widzenia procesów metalurgicznych Fe, C, CO, zawierają one także wiele pierwiastków szkodliwych takich jak: Zn, Pb, Na, K. W artykule opisano źródła pochodzenia i postać Zn występującego w odpadach poprodukcyjnych hut oraz metody usuwania cynku z odpadowych materiałów żelazonośnych. Dokonano identyfikacji optymalnych warunków usuwania cynku w czasie procesu spiekania zacynkowanych materiałów żelazonośnych, dokonując obliczeń termochemicznych przy użyciu programu komputerowego FactSage.
EN
The study investigates the ability to remove copper, tin and arsenic from iron ore, scrap and liquid steel based on the literature and thermodynamic calculations using the FactSage 7.2 software. Methods of removing Cu, Sn and As from iron-bearing materials, feasible in industrial conditions in the near term, were selected. Simulation tests with the use of the FactSage 7.2 software showed that under reduced pressure conditions Cu and Sn can be removed from the steel bath, while As evaporation is not possible. Laboratory tests were carried out, including the removal of Sn and Cu in the process of degassing of liquid steel in a deep vacuum in a vacuum induction furnace and the removal of Sn from iron ore in the sintering process. Under conditions of deep vacuum (below 40 Pa), high temperature (1670°C) and a correspondingly long vacuum treatment time (over 30 minutes), the efficiency of removing the copper and tin contents from the liquid steel of approximately 14 and 17% respectively was obtained. The iron ore sintering test with a high Sn content showed the effectiveness of reducing the Sn content during this process, amounting to approx. 30%.
PL
Zbadano możliwości usuwania miedzi, cyny i arsenu z rudy żelaza, złomu i ciekłej stali na podstawie literatury oraz termodynamicznych obliczeń za pomocą oprogramowania FactSage 7.2. Wybrano sposoby usuwania Cu, Sn i As z materiałów żelazonośnych możliwe do realizacji w warunkach przemysłowych w najbliższej perspektywie czasowej. Badania symulacyjne z zastosowaniem oprogramowania FactSage 7.2 wykazały, że w warunkach obniżonego ciśnienia można usunąć Cu i Sn z kąpieli stalowej, natomiast nie jest możliwe odparowanie As. Przeprowadzono próby laboratoryjne, obejmujące usuwanie Sn i Cu w procesie odgazowania ciekłej stali w głębokiej próżni w próżniowym piecu indukcyjnym oraz usuwanie Sn z rudy żelaza w procesie spiekania. W warunkach głębokiej próżni (poniżej 40 Pa), wysokiej temperatury (1670°C) i odpowiednio długiego czasu obróbki próżniowej (powyżej 30 minut) uzyskano skuteczności usunięcia zawartości miedzi i cyny w ciekłej stali, wynoszące odpowiednio około 14 i 17%. Próba spiekania rudy żelaza z wysoką zawartością Sn wykazała skuteczność zmniejszenia zawartości Sn w czasie tego procesu, wynoszącą ok. 30%.
EN
Ferrostal steelworks produce 1,100 tonnes of scale during continuous casting per year. The attempts made in Ferrostal to introduce a mixture of scale and carbon into a steel furnace were unsuccessful. Therefore, Ferrostal, in cooperation with the Institute of Ferrous Metallurgy, started a research project on the development of an innovative technology enabling the recycling of scale to the steelmaking process. The use of carbon and aluminium was proposed to reduce iron oxides. Aluminium dross was used as the main source of metallic aluminium, although tests are also carried out with other waste materials containing metallic aluminium. The test programme includes determining the ratio for scale, carbon carrier and metallic aluminium carrier. Industrial tests showed high efficiency of iron oxide reduction. The energy balance does not affect the production process negatively, although it is slightly negative.
PL
Podczas ciągłego odlewania w hucie Ferrostal powstaje 1100 ton zgorzeliny rocznie. Próby wprowadzania mieszanki zgorzeliny i węgla do pieca stalowniczego realizowane w Ferrostalu zakończyły się niepowodzeniem. Z tego względu Ferrostal, we współpracy z Instytutem Metalurgii Żelaza, rozpoczął projekt badawczy dotyczący opracowania innowacyjnej technologii umożliwiającej zawrócenie zgorzeliny do procesu produkcji stali. Zaproponowano użycie węgla i aluminium do redukcji tlenków żelaza. Jako główne źródło metalicznego aluminium zastosowano zgary aluminiowe, ale testy przeprowadza się również z innymi materiałami odpadowymi zawierającymi metaliczne aluminium. Program testowy obejmuje określenie proporcji między zgorzeliną, nośnikiem węgla i nośnikiem metalicznego aluminium. Testy przemysłowe wykazały wysoką skuteczność redukcji tlenku żelaza. Bilans energetyczny nie wpływa negatywnie na proces produkcji, aczkolwiek jest nieznacznie ujemny.
4
Content available Decarbonisation pathways of the steel industry
75%
EN
The article was prepared on the basis of reports from the Green Steel for Europe (GREENSTEEL) project funded by the European Union as part of the implementation of the climate and energy goals for 2030 and the long-term strategy for a climate neutral Europe by 2050. A consortium of implementers composed of ten partners from EU countries, including Łukasiewicz - Institute for Ferrous Metallurgy in Gliwice, has identified promising technologies for the decarbonisation of the steel industry, defined technological pathways constituting process chains composed of these technologies, as well as scenarios of the decarbonisation process until 2030 and until 2050. The end result of the project is a set of insights and recommendations for effective clean steel manufacturing solutions suitable for the EU to achieve the EU’s climate and energy goals.
PL
Artykuł opracowano na podstawie raportów z realizacji projektu pt. „Zielona stal dla Europy - Green Steel for Europe” (GREENSTEEL) sfinansowanego ze środków Unii Europejskiej w ramach realizacji celów klimatycznych i energetycznych na 2030 r. oraz długoterminowej strategii na rzecz Europy neutralnej dla klimatu do 2050 r. Konsorcjum realizatorów złożone z dziesięciu partnerów z krajów UE, w tym Łukasiewicz - Instytut Metalurgii Żelaza w Gliwicach, zidentyfikowało obiecujące technologie dekarbonizacji przemysłu stalowego, określiło ścieżki technologiczne stanowiące łańcuchy procesów złożone z tych technologii, a także scenariusze procesu dekarbonizacji do 2030 i do 2050 roku. Efektem końcowym projektu jest zbiór spostrzeżeń i zaleceń dotyczących skutecznych rozwiązań w zakresie czystej produkcji stali, odpowiednich dla UE, aby osiągnąć cele klimatyczne i energetyczne UE.
PL
W artykule przedstawiono przebieg i wyniki badań przemysłowych wykonanych w ramach 1 Etapu projektu, którego końcowym celem jest opracowanie innowacyjnej stali elektrotechnicznej nowej generacji, przeznaczonej na blachy transformatorowe o wysokiej przenikalności magnetycznej (wysokiej indukcji 1,9 T i małej stratności 0,8 W/kg) z ziarnem zorientowanym (typ HGO) wraz z technologią jej wytwarzania w zakresie: wytapiania w konwertorze z obróbką pozapiecową uwzględniającą próżniowe odgazowanie stali w demonstracyjnej instalacji, ciągłego odlewania wlewków płaskich i walcowania ich na gorąco na półwyrób do dalszego przerobu. Pozostałe etapy wytwarzania blach transformatorowych obejmujące walcowanie na zimno, międzyoperacyjną obróbkę cieplną i cieplno-chemiczną oraz obróbkę powierzchniową stanowią tajemnicą przedsiębiorstwa. W ramach 1 Etapu projektu wykonano symulacje numeryczne i fizyczne wytapiania, odlewania i walcowania na gorąco stali o założonych parametrach jakościowych, celem uzyskania materiału do dalszych badań. Określono parametry wytapiania i odlewania zapewniające uzyskanie odpowiedniej jakości stali o maksymalnej zawartość tlenu całkowitego 12 ppm i udziale powierzchniowym wtrąceń niemetalicznych max. 0,05%, oraz wymagania techniczno-technologiczne urządzenia do obróbki ciekłej stali w próżni, stanowiącego instalację demonstracyjną, a także opracowano model reologiczny stali transformatorowej dla procesu walcowania blach na gorąco, z użyciem którego przeprowadzono wstępne symulacje w celu uzyskania rozkładów temperatury, odkształcenia i prędkości odkształcenia w walcowanym paśmie.
EN
The article presents the process and results of industrial tests carried out as part of the 1st Stage of the project, the final goal of which is to develop an innovative new-generation electrical steel designed for the manufacture of transformer plates with high magnetic permeability (high inductance of 1.9 T and low lossiness of 0.8 W/ kg) and with oriented grain (HGO type) together with the technology of its production in the scope of: melting of steel in a converter with ladle treatment taking into account vacuum degassing of steel in a demonstration installation, continuous casting of flat ingots and their hot rolling for further processing. The remaining stages of transformer plate production, including cold rolling, inter-operational heat and thermo-chemical treatment, as well as surface treatment operations, are a trade secret. As part of the 1st Stage of the project, numerical and physical simulations of melting, casting and hot rolling of steel with assumed quality parameters were carried out in order to obtain material for further research. The melting and casting processes parameters were determined to ensure obtaining the appropriate quality of steel with a maximum total oxygen content of 12 ppm and the surface fraction of non-metallic inclusions of max. 0.05%, technical and technological requirements for the device for liquid steel processing in vacuum constituting the demonstration installation were determined, and a rheological model of transformer steel for the sheet hot-rolling process was developed, with the use of which preliminary simulations were carried out to obtain temperature, deformation and strain rates in the rolled strip.
EN
Experimental investigations have been carried out to optimise the secondary steel treatment technology in a ladle in order to ensure the required quality of steel intended for hot rolling of sections on an innovative line, with a reduced number of rolling stands characterised by a higher intensity of plastic processing. Experimental heats were made according to various steel deoxidation variants during secondary treatment and continuous casting of two steel grades. Continuous ingots were used to hot roll sections of various cross-sectional sizes. Based on the results of metallurgical, microscopic and mechanical tests of the sections, guidelines for the optimal continuous ingot production technology for hot rolling of sections on an innovative production line were developed.
PL
Przeprowadzono badania doświadczalne nad optymalizacją technologii pozapiecowej obróbki stali w kadzi w celu zapewnienia wymaganej jakości stali przeznaczonej do walcowania na gorąco kształtowników w innowacyjnej linii, przy zmniejszonej liczbie klatek walcowniczych, charakteryzującej się większą intensywnością przerobu plastycznego. Wykonano doświadczalne wytopy według różnych wariantów odtleniania stali w czasie pozapiecowej obróbki i ciągłego odlewania dwóch gatunków stali. Z wlewków ciągłych odwalcowano na gorąco kształtowniki o różnej wielkości przekroju poprzecznego. Na podstawie wyników badań metaloznawczych, mikroskopowych i właściwości mechanicznych kształtowników opracowano wytyczne do optymalnej technologii produkcji wlewków ciągłych do walcowania na gorąco kształtowników w innowacyjnej linii produkcyjnej, z wyeliminowaniem drutu Al wprowadzanego do krystalizatora w procesie ciągłego odlewania stali.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.