The conventional port distribution power system is being disrupted by increasing distributed generation (DG) levels based on integrated energy. Different new energy resources combine with conventional generation and energy storage to improve the reliability of the systems. Reliability assessment is one of the key indicators to measure the impact of the distributed generation units based on integrated energy. In this work, an analytical method to investigate the impacts of using solar, wind, energy storage system (ESS), combined cooling, heating and power (CCHP) system and commercial power on the reliability of the port distribution power system is improved, where the stochastic characteristics models of the major components of the new energy DG resources are based on Markov chain for assessment. The improved method is implemented on the IEEE 34 Node Test Feeder distribution power system to establish that new energy resources can be utilized to improve the reliability of the power system. The results obtained from the case studies have demonstrated efficient and robust performance. Moreover, the impacts of integrating DG units into the conventional port power system at proper locations and with appropriate capacities are analyzed in detail.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A sequence of N-doped carbon materials has been synthesized using poly(acrylonitrile)-ionic liquid copolymers as carbon precursors. The nitrogen content and configuration in carbon materials has been changed regularly within a certain range by adjusting the proportion of ionic liquids. We found that the capacity and rate performance increased dramatically after the introduction of ionic liquids, which was attributed to incorporation of higher amount pyridinic-N, pyrrolic-N into the carbon materials. Besides, with the increase of the graphitic-N, the initial Coulombic efficiency decreased from 58.5 % to 53.47 % and the RSEI raised from 66.34 W to 140.96 W, which was attributed to the higher cohesive energy of Li dimmer than adsorption energy of graphitic-N with Li, since more lithium clusters during the formation of SEI film were formed. The electrochemical tests also revealed the negative role of graphitic-N in the capacity. Therefore, this work provides a feasible method to design the nitrogen content and configuration of the N-doped carbon materials.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.