We answer several questions of V. Tkachuk [Fund. Math. 186 (2005)] by showing that ∙ there is a ZFC example of a first countable, 0-dimensional Hausdorff space with no point-countable π-base (in fact, the minimum order of a π-base of the space can be made arbitrarily large); ∙ if there is a κ-Suslin line then there is a first countable GO-space of cardinality κ⁺ in which the order of any π-base is at least κ; ∙ it is consistent to have a first countable, hereditarily Lindelöf regular space having uncountable π-weight and ω₁ as a caliber (of course, such a space cannot have a point-countable π-base).
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We improve some results of Pavlov and Filatova, concerning a problem of Malykhin, by showing that every regular space X that satisfies Δ(X) > e(X) is ω-resolvable. Here Δ(X), the dispersion character of X, is the smallest size of a non-empty open set in X, and e(X), the extent of X, is the supremum of the sizes of all closed-and-discrete subsets of X. In particular, regular Lindelöf spaces of uncountable dispersion character are ω-resolvable. We also prove that any regular Lindelöf space X with |X| = Δ(X) = ω₁ is even ω₁-resolvable. The question whether regular Lindelöf spaces of uncountable dispersion character are maximally resolvable remains wide open.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.