The complex Monge-Ampère operator is a useful tool not only within pluripotential theory, but also in algebraic geometry, dynamical systems and Kähler geometry. In this self-contained survey we present a unified theory of Cegrell's framework for the complex Monge-Ampère operator.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We prove some existence results for the complex Monge-Ampère equation $(dd^cu)ⁿ = gdλ$ in ℂⁿ in a certain class of homogeneous functions in ℂⁿ, i.e. we show that for some nonnegative complex homogeneous functions g there exists a plurisubharmonic complex homogeneous solution u of the complex Monge-Ampère equation.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let $D_{j}$ be a bounded hyperconvex domain in $ℂ^{n_{j}}$ and set $D = D₁ ×⋯× D_{s}$, j=1,...,s, s ≥ 3. Also let $Ω_π$ be the image of D under the proper holomorphic map π. We characterize those continuous functions $f:∂Ω_π → ℝ$ that can be extended to a real-valued pluriharmonic function in $Ω_π$.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let μ be a non-negative measure with finite mass given by $φ(dd^{c}ψ)ⁿ$, where ψ is a bounded plurisubharmonic function with zero boundary values and $φ ∈ L^{q}((dd^{c}ψ)ⁿ)$, φ ≥ 0, 1 ≤ q ≤ ∞. The Dirichlet problem for the complex Monge-Ampère operator with the measure μ is studied.
In this paper we generalize Kolodziej's subsolution theorem to bounded and unbounded pseudoconvex domains, and in that way we are able to solve complex Monge-Ampère equations on general pseudoconvex domains. We then give a negative answer to a question of Cegrell and Kolodziej by constructing a compactly supported Radon measure $\mu$ that vanishes on all pluripolar sets in $C^n$ such that $\lambda(C^n)=(2\pi)^n$, and for which there is no function $u$ in $\mathcal L_+$ such that $(dd^cu)^n=\mu$. We end this paper by solving a Monge_Amp±re type equation. Furthermore, we prove uniqueness and stability of the solution.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.