In this article we investigate the pointwise, discrete and transfinite convergences in the classes of real functions defined on topological spaces which are upper and lower quasicontinuous at each point.
Let (X, Tx) be a topological space and let (Y, dy) be a metric space. For a function f : X → y denote by C(f) the set of all continuity points of f and by D(f) = X\C(f) the set of all discontinuity points of f. Let C(X,Y) = {f : X → Y; f is continuous}, H(X, Y) = {f: X →Y; D{f) is countable}, H1(X, Y) = {f: X → Y; ∃h ∈c(x,Y) {x; f(x) ≠ h{x)} is countable}, and H2(X, Y) = H(X, Y) ∩ H1(X, Y). In this article we investigate some convergences (pointwise, uniform, quasiuniform, discrete and transfinite) of sequences of functions from H(X, Y), H1(X, Y) and H2(X, Y).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.