Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 22

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
Solar collectors are used increasingly in single-family housing. Their popularity depends on many factors, including the price-to-productivity ratio, which in turn results from the development of solar collector technology as well as entire systems. This development consists of many aspects, including those related to the modernization of control systems and measuring of solar collector systems. Currently used systems offer, among others, the ability to determine the approximate solar heat gains using the sensors necessary for normal control of the sensor system. The paper analyzes, on the example of one facility, how such installations work in Polish conditions. An installation consisting of 3 solar collectors has been selected for analysis, supporting the preparation of hot utility water for a single-family residential building. The detailed analysis concerned days with high heat gains compared to the average heat demand for hot water preparation in the building. The temperature verification method (TVM) of the calculated solar heat gains by the solar system controller has been proposed. Then, differences in measurements according to two methods (controller and TVM) have been presented at various characteristic moments of the installation’s operation (start- -up, stop) and during continuous operation. It has been shown that during the day gains measured by the controller can be 15% lower than gains measured by the TVM method. The check has been carried out at a daily sunlight value higher than 4.8 kWh/m2 measured on a horizontal plane. The ratio of heat energy supplied to the domestic hot water storage tank to the measured insolation has been 34%. The sum of annual solar heat gains measured by the controller and TVM differed by 5.2%.
PL
W budownictwie jednorodzinnym coraz częściej stosuje się kolektory słoneczne. Ich popularność zależy od wielu czynników, w tym stosunku ceny do wydajności, co z kolei wynika z rozwoju technologii kolektorów słonecznych, a także całych systemów. Na rozwój ten składa się wiele aspektów, w tym związanych z modernizacją układów sterowania i pomiarami systemów kolektorów słonecznych. Obecnie stosowane systemy oferują m.in. możliwość określenia przybliżonych uzysków ciepła słonecznego za pomocą czujników niezbędnych do normalnego sterowania układem pracy systemu. W artykule przeanalizowano, na przykładzie jednego obiektu, jak takiego typu instalacje działają w polskich warunkach. Do analizy wybrano instalację składającą się z 3 kolektorów słonecznych wspomagających przygotowanie ciepłej wody użytkowej dla budynku mieszkalnego jednorodzinnego. Szczegółowa analiza dotyczyła dni z dużymi uzyskami ciepła w porównaniu ze średnim zapotrzebowaniem na ciepło do przygotowania ciepłej wody w budynku. Zaproponowano metodę weryfikacji temperatury (TVM) obliczonych zysków ciepła słonecznego przez regulator systemu solarnego. Następnie przedstawiono różnice w pomiarach prowadzonych dwiema metodami (sterownik PLUM i TVM) w różnych charakterystycznych momentach pracy instalacji (rozruch, zatrzymanie) oraz podczas pracy ciągłej. Wykazano, że w ciągu dnia uzyski ciepła mierzone przez kontroler mogą być o 15% niższe niż uzyski mierzone metodą TVM. Sprawdzenie zostało przeprowadzone przy dziennej wartości nasłonecznienia wyższej niż 4,8 kWh/m2 mierzonego w płaszczyźnie poziomej. Stosunek energii cieplnej dostarczonej do zasobnika ciepłej wody użytkowej do zmierzonego nasłonecznienia wyniósł 34%. Suma rocznych uzysków ciepła słonecznego mierzonych przez regulator i TVM różniła się o 5,2%.
EN
In Poland an increase in the of number solar thermal collectors is observed in household applications. For economic and ecological profitability the creation of a solar thermal installation design in a proper manner is essential. In order to determine solar installations size, software calculating future solar heat gains is used. SHW software is an examples of such software. The aim of this work was to compare the simulation results with the real results of the solar installation operation. The comparison was performed by an example of a single-family house with flat plate collector installations located in south-east Poland. This installation supports domestic hot water preparation in a house occupied by four people (in two-year period of analyses). The additional heat source in this building is a gas boiler. Solar fraction parameter values were chosen for this comparison. Solar fraction is calculated as a ratio of solar heat gains used in the domestic hot water preparation process to the heat desired for domestic hot water preparation. The real results of Solar Fraction turned out to be higher than the simulation results from May to August (there were many days with Solar Fraction = 1). A difference of 20–50 percentage points was observed (Solar Fraction). Apart from this period no special differences were observed. Additionally analyses of differences between solar heat gains calculated by Get Solar simulation software with real values (for analyzed building) was performed. This simulation analysis was done before process of building installations.
PL
W Polsce obserwuje się wzrost liczby kolektorów słonecznych w zastosowaniach domowych. Dla opłacalności ekonomicznej i ekologicznej ważne jest właściwe zaprojektowanie instalacji solarnej. W celu ustalenia wielkości instalacji słonecznych stosuje się oprogramowanie do obliczania przyszłych zysków ciepła słonecznego. Program SHW jest jednym z przykładów takiego oprogramowania.Celem pracy było porównanie wyników symulacji z rzeczywistymi wynikami pracy instalacji solarnej. Porównanie przeprowadzono na przykładzie domu jednorodzinnego (z instalacją płaskich kolektorów słonecznych) położonego w południowo-wschodniej Polsce. Instalacja solarna obsługuje przygotowywanie ciepłej wody użytkowej w domu zamieszkanym przez cztery osoby (w dwuletnim okresie analizy). Dodatkowym źródłem ciepła w tym budynku jest kocioł gazowy. Do porównania wybrano wartości parametru Solar Fraction. Solar Fraction jest obliczany jako stosunek zysków ciepła słonecznego wykorzystywanych w procesie przygotowania ciepłej wody użytkowej do ciepła pożądanego do przygotowania ciepłej wody użytkowej. Rzeczywiste wyniki frakcji słonecznej (w skali miesięcznej) okazały się wyższe od wyników symulacji w okresie od maja do sierpnia (było wiele dni z Solar Fraction = 1). Maksymalna różnica wyniosła 20–50 punktów procentowych (Solar Fraction). Oprócz tego okresu nie zaobserwowano żadnych szczególnych różnic. Dodatkowo przeprowadzono analizę osiągniętych różnic między zyskami ciepła słonecznego obliczonymi przez oprogramowanie symulacyjne Get Solar a wartościami rzeczywistymi (dla analizowanego budynku). Symulacja ta została wykonana przed procesem budowy instalacji.
EN
The analysis of a solar installation operation was conducted on the example of a detached house in the Lesser Poland province in Poland. A gas boiler and three flat-plate collectors are located inside the house, which are used for heating water in the hot water tank with a volume of 220 dm3. The installation was established in 2012. The heat measured system (for solar gains) was added in 2014. In 2015–2019 solar heat gains measured per area of absorber were higher than 340 kWh/m2. During a two-week period in June 2015, the insolation on the horizontal plane and the temperature were measured in 4 different points of the hot water tank. On this basis, heat losses from the storage tank were determined, i.e. a decrease in temperature during periods with and without the consumption of hot water by the residents. During this period, a temperature higher than 80°C was observed several times in the hot water tank. In two parts of the hot water tank, rhe determined temperature decreases were used to obtain the heat loss amount. In the analyzed period (2 weeks), 9 days were observed with solar heat gains higher than 9 kWh/day. For these days, the value of heat loss from the solar hot water tank was estimated at over 6 kWh/day. This data corresponds to the actual heat demand for hot water preparation in the building at 7.3 kWh/day. The correlation between daily solar heat gains and solar hot water tank heat losses were also determined. In addition, based on the amount of heat losses, the value of the tank loss coefficient was estimated. The obtained value was compared with the manufacturer’s data and reference data.
PL
Analiza aspektów pracy instalacji solarnej została przeprowadzona na przykładzie domu jednorodzinnego w województwie małopolskim w Polsce. W analizowanym budynku jednorodzinnym znajduje się kocioł gazowy i instalacja solarna złożona z trzech płaskich kolektorów słonecznych. Urządzenia te odpowiadają za przygotowanie ciepłej wody użytkowej magazynowanej w zasobniku o pojemności 210 dm3. Instalacja powstała w 2012 roku, w 2014 roku została opomiarowana pod kątem uzysków solarnych. W latach 2015–2019 mierzono uzyski solarne, były one wyższe niż 340 kWh/m2 powierzchni absorbera. Podczas dwutygodniowego okresu w czerwcu 2015 roku mierzono także natężenie promieniowania słonecznego na płaszczyźnie poziomej i temperaturę w 4 różnych punktach zasobnika ciepłej wody. Na tej podstawie określono straty ciepła z zasobnika, tj. spadek temperatury w zasobniku w okresach z i bez poboru ciepłej wody użytkowej przez mieszkańców. W tym okresie zanotowano temperaturę wyższą niż 80°C w zasobniku tylko przez kilka stosunkowo krótkich okresów. Wyznaczone spadki temperatury w dwóch częściach zasobnika ciepłej wody użytkowej użyto do określenia ilościowych strat ciepła. W analizowanym okresie (2 tygodnie) zaobserwowano 9 dni z uzyskami solarnymi wyższymi niż 9 kWh/dzień. Dla tych dni oszacowano wartości strat ciepła z zasobnika na poziomie powyżej 6 kWh/dzień. Dane te korespondują z rzeczywistym zapotrzebowaniem na ciepło do przygotowania ciepłej wody użytkowej w budynku na poziomie 7,3 kWh/dzień. Określono także zależności między dziennymi uzyskami solarnymi a stratami ciepła z zasobnika (korelacja). Ponadto bazując na wielkościowych stratach ciepła, oszacowano wielkość współczynnika strat ciepła z zasobnika. Uzyskaną wartość porównano z danymi producenta i danymi referencyjnymi.
EN
Energy storage is an increasingly vital aspect of the energy sector in Poland due to the growing prevalence of renewable energy sources. Its primary goal is to support the uptake of renewable energy in the country’s energy mix. The article presented here analyzes the economic potential of buying and selling electricity on the Intra-Day Market and the Day-Ahead Market of Towarowa Giełda Energii SA (Polish Energy Market: TGE) in terms of energy storage. In four scenarios, energy was either bought and sold on the DAM/IDM or bought on one market and sold on the other to identify the most favorable case. Two four-month periods in 2021 and 2023 were examined. An analysis was carried out on a lithium-ion storage facility that has a two-hour charging cycle for energy storage. A methodology was proposed to identify the two highest and two lowest energy prices for imposing constraints on the purchase and sale times. The time of day when these prices occurred was also analyzed. The annual and periodic profits that can be obtained by purchasing and selling stored energy were calculated. The calculations and analyses facilitated inter-market comparison. Energy storage payback time was computed, and investment profitability was examined. The final section presents conclusions, opportunities, and suggestions for further research in this area.
PL
Magazynowanie energii jest coraz ważniejszym aspektem sektora energetycznego w Polsce ze względu na rosnącą popularność odnawialnych źródeł energii. Jego jednym z głównych celów jest wspieranie wykorzystania energii odnawialnej w miksie energetycznym kraju. W prezentowanym artykule dokonano analizy potencjału ekonomicznego zakupu i sprzedaży energii elektrycznej na Rynku Dnia Bieżącego i Rynku Dnia Następnego Towarowej Giełdy Energii SA (Polski Rynek Energii: TGE) w zakresie magazynowania energii. W czterech scenariuszach energię kupowano i sprzedawano na RDN/IDM lub kupowano na jednym rynku i sprzedawano na drugim, aby określić najkorzystniejszy przypadek. Badano dwa czteromiesięczne okresy w latach 2021 i 2023. Przeprowadzono analizę magazynu litowo-jonowego, który posiada dwugodzinny cykl ładowania w celu magazynowania energii. Zaproponowano metodologię identyfikacji dwóch najwyższych i dwóch najniższych cen energii w celu nałożenia ograniczeń na czas zakupu i sprzedaży. Analizie poddano także porę dnia, w której te ceny występowały. Obliczono roczne i okresowe zyski, które można uzyskać z zakupu i sprzedaży zmagazynowanej energii. Przeprowadzone obliczenia i analizy umożliwiły porównania międzyrynkowe. Obliczono czas zwrotu magazynowania energii oraz zbadano opłacalność inwestycji. W ostatniej części przedstawiono wnioski oraz możliwości i sugestie dalszych badań w tym obszarze. Jak obliczono, najbardziej opłacalnym przypadkiem po uwzględnieniu efektywności ekonomicznej był zakup na RDN i sprzedaż na RDN w części 2023 roku: 18 751,61 [EUR/MWh mocy]. Dla porównania, najwyższą wartość za rok 2021 uzyskano w przypadku sprzedaży i zakupu na IDM, z zyskiem na poziomie 7531,23 [EUR/MWh mocy].
EN
Between 2019 and 2023, over one million PV micro-installations were built in Poland. Most of them have the option of settling prosumer discounts: net-metering (80% of energy sent to the grid returns to the user for PV installation power up to 10 kWp and 70% for power between 10 and 50 kWp). Owners of new PV micro-installations (from 2022) are subject to net-billing settlements, which is economically unfavorable due to the coexistence of low energy prices and high productivity of PV panels. This, however, favors efforts to increase self-consumption of energy in prosumer PV micro-installations. Therefore, for the selected PV installation, the use of electricity storage and thermal energy storage (for the purposes of preparing domestic hot water) was analyzed. The calculations were based on data from the installation collected during one year of operation. A calculation methodology for energy distribution for the consumption and storage of electricity and heat was developed, and thus for estimating the value of energy sent to the grid, taking into account the above-mentioned. The use of electrical and thermal energy storage resulted in an increase in the value of self-consumed energy, with the self-consumption coefficient ranging from 30 to over 80%. The self-consumption rate in the first year of operation of the installation (without energy storage) reached 27.1%, and in the second year 30.7%. A 3 kWh electricity storage would increase the selfconsumption rate in the following years to 51 and 57.2%, and for a 6 kWh capacity 58.5 and 64.1%.
PL
W latach 2019–2023 w Polsce przybyło ponad milion mikroinstalacji PV. Większość z nich ma możliwość rozliczania bonifikat prosumenckich – net-metering (80% energii wysłanej do sieci wraca do użytkownika dla mocy instalacji PV do 10 kWp i 70% dla mocy od 10 do 50 kWp). Właściciele nowych mikroinstalacji PV (od 2022 r.) podlegają rozliczeniu typu net-billing, co jest niekorzystne ekonomicznie ze względu na współwystępowanie niskich cen energii i wysokiej produktywności paneli PV. Sprzyja to jednak działaniom na rzecz zwiększenia autokonsumpcji energii w prosumenckich mikroinstalacjach PV. Dlatego dla wybranej instalacji PV przeanalizowano wykorzystanie magazynowania energii elektrycznej i magazynowania energii cieplnej (na potrzeby przygotowania ciepłej wody użytkowej). Obliczenia oparto na danych z instalacji zebranych w ciągu jednego roku eksploatacji. Opracowano metodykę kalkulacji rozdziału energii na potrzeby zużycia i magazynowania energii elektrycznej i cieplnej, a tym samym szacowania wartości energii przesyłanej do sieci, uwzględniającą powyższe. Zastosowanie magazynowania energii elektrycznej i cieplnej spowodowało wzrost wartości energii zużywanej na własny użytek, przy czym współczynnik autokonsumpcji wahał się od 30 do ponad 80%. Wskaźnik autokonsumpcji w pierwszym roku eksploatacji instalacji (bez magazynowania energii) wyniósł 27,1%, a w drugim roku 30,7%. Magazyn energii elektrycznej o pojemności 3 kWh zwiększyłby wskaźnik samozużycia w kolejnych latach do 51 i 57,2%, a dla pojemności 6 kWh odpowiednio 58,5 i 64,1%.
EN
The energy sector, particularly that related to renewable energy, is growing rapidly. The analysis of factors influencing the production of electricity from solar radiation is important in terms of the ever-increasing number of photovoltaic (PV) installations. In Poland, the vast majority of installed PV capacity belongs to prosumers, so a comparative analysis was conducted for two domestic installations, one in southern Poland and the other located in central Poland. Operating conditions were compared, specifically with regard to irradiance, outdoor temperature and the calculated temperature of photovoltaic cells. The specific yield was then compared in daily, monthly and annual statements. The effects of the previously mentioned parameters on the energy yields of the two installations were considered. The installation in southern Poland in 2022 produced 5,136.6 kWh, which corresponds to a specific yield of 1,019.17 kWh/kWp, while the energy production of the installation in central Poland was 4,248.9 kWh, which corresponds to a specific yield of 965.67 kWh/kWp.
PL
W związku z dynamicznie rozwijającym się sektorem energetycznym, w szczególności związanym z energią pozyskiwaną ze źródeł odnawialnych, oraz z ciągle rosnącą liczbą instalacji fotowoltaicznych, ważne jest wzięcie pod uwagę czynników wpływających na produkcję energii z promieniowania słonecznego. Większość instalacji PV należy do prosumentów, dlatego praca porównawcza została przeprowadzona dla dwóch przydomowych instalacji, jednej w Polsce południowej i drugiej znajdującej się w Polsce środkowej. Porównano nasłonecznie, temperaturę zewnętrzną, jak i temperaturę ogniw fotowoltaicznych oraz wydajności właściwe w zestawieniach dziennych, miesięcznych i rocznych. Rozważono wpływ wcześniej wymienionych parametrów na uzyski z obu instalacji. Instalacja w Polsce południowej w 2022 roku wyprodukowała 5136,6 kWh, co odpowiada wydajności właściwej na poziomie 1019,17 kWh/kWp, natomiast produkcja instalacji w Polsce środkowej wyniosła 4248,9 kWh, co w przeliczeniu na wydajność właściwą wyniosło 965,67 kWh/kWp. Sprawność paneli fotowoltaicznych bezpośrednio wpływa na przetwarzanie promieniowania słonecznego na energię elektryczną. W Łękach sprawność ta wynosiła (w 2022 roku) 19,2%, a w Solcu 20,77% (instalacja z mikroinwerterami). Na przykładzie instalacji w Łękach przeanalizowano wpływ promieniowania słonecznego i temperatury otoczenia na temperaturę ogniwa fotowoltaicznego. Wzrost temperatury ogniwa skutkował spadkiem sprawności wytwarzanej energii o 0,370%/℃ w przypadku badanej instalacji.
PL
W Polsce obserwowany jest dynamiczny rozwój energetyki odnawialnej, której głównymi kierunkami są energia słoneczna i wiatr, a rzadziej geotermalna. W pracy przeanalizowano efektywność współpracy słonecznych źródeł termalnych ze źródłem geotermalnym na przykładzie budynku szpitalnego z basenem w Zakopanem (południowa Polska). W 2015 roku w budynku wybudowano instalację solarną z 75 kolektorami skierowanymi na stronę południową (kąt nachylenia do płaszczyzny poziomej 30°) i 40 kolektorami na stronę zachodnią (kąt nachylenia do płaszczyzny poziomej 30°). Głównym zadaniem wybudowanej instalacji kolektorów słonecznych jest wspomaganie przygotowania ciepłej wody użytkowej w budynku (cele sanitarne). Pozostała część energii jest dostarczana jako energia geotermalna z przedsiębiorstwa „Geotermia Podhalańska”. Instalacją konwencjonalną wspomagającą system grzewczy w „Geotermia Podhalańska” są kotły gazowe. W instalacji solarnej wyposażonej w ciepłomierz monitorowano uzyski ciepła, oddzielnie dla strony południowej i oddzielnie dla strony zachodniej. Zmierzone wyniki porównano z danymi o nasłonecznieniu dla Zakopanego oraz kąta i kierunków posadowienia kolektorów. Dane pozyskano z serwisu PVGIS-SARAH oraz z serwisu rządowego (Typical Reference Year). Analizę efektowności procesu pozyskania energii wykonano dla okresu 1.07.2015 – 31.12.2016 i wyniosła ona dla strony południowej i zachodniej odpowiednio 19% i 11,3%. Są to bardzo niskie wartości jak na polskie instalacje z kolektorami słonecznymi. Osiągnięcie optymalnego efektu ekologicznego, wyrażonego w rocznej redukcji emisji CO2 jest uzależnione od rodzaju zastępowanego źródła. Dla opcji geotermalnego źródła z udziałem 20% energii z gazu wartość redukcji emisji CO2 wyniosła 1890 kg.
EN
Electromobility and electric cars are the words that began to gain significance in the social discourse in Poland especially intensively since 2017. Then, along with the announcement of the „Plan for the Development of the Electromobility Market in Poland”, government declarations appeared regarding one million electric cars that are to be used on Polish roads by 2025. It is already known today that such a result in Poland is impossible to achieve in the assumed time. According to the report of the Polish Alternative Fuels Association-PSPA (Polish EV Outlook 2020), in the event of introducing subsidies for the purchase of cars or subsidies, such as the possibility of 100% VAT deduction by buyers of such vehicles, the number of electric cars in Poland in 2025 could be over 280 thousand pcs. Without such government support, the Polish electric car park will be twice smaller. High prices of electric cars are one of the key barriers limiting Poles in making decisions related to the purchase of a vehicle. The aim of this article is to analyse the current state of the social environment in relation to the topic of ecological, electric cars. To what extent is it beneficial for the potential car owner to change from a traditional (petrol or diesel) car to an electric car due to purely financial benefits and other aspects? The article consists of an overview – presenting aspects related to the socio-economic benefits of buying an electric car. It also contains specific calculations regarding the profitability of using such a car in Polish conditions.
PL
Elektromobilność i samochody elektryczne to hasła, które w społecznym dyskursie w Polsce szczególnie intensywnie zaczęły nabierać znaczenia od roku 2017. Wówczas, wraz z ogłoszeniem „Planu Rozwoju Rynku Elektromobilności w Polsce”, ogłoszone zostały rządowe deklaracje dotyczące miliona samochodów elektrycznych, które mają się pojawić na polskich drogach do 2025 r. Już dziś wiadomo, że taki wynik jest w Polsce nie do osiągnięcia. Jak wynika z raportu Polskiego Stowarzyszenia Paliw Alternatywnych – PSPA (Polish EV Outlook 2020), w przypadku wprowadzenia dopłat do zakupu samochodów lub subsydiów takich jak np. możliwość odliczenia przez kupujących takie pojazdy całości VAT, liczba aut elektrycznych w Polsce w 2025 roku mogłaby wynieść ponad 280 tys. sztuk. Bez takiego wsparcia państwa polski park samochodów elektrycznych będzie dwukrotnie mniejszy. Wysokie ceny samochodów elektrycznych to jedna z kluczowych barier ograniczająca Polaków w decyzji związanej z zakupem pojazdu. Celem niniejszego artykułu jest analiza obecnego podejścia otoczenia społecznego do tematu ekologicznych, elektrycznych samochodów. Na ile, ze względu na czysto finansowe korzyści oraz inne aspekty, zmiana samochodu z tradycyjnego (zasilanego benzyną lub posiadającego napęd diesla) na samochód elektryczny jest dla potencjalnego właściciela samochodu korzystna. Artykuł składa się z części przeglądowej – prezentującej aspekty związane ze społeczno-ekonomicznymi korzyściami związanymi z zakupem samochodu elektrycznego. Zawiera także konkretne wyliczenia dotyczące opłacalności użytkowania takiego samochodu w warunkach polskich.
EN
Wastewater from the production of meat and bone meal, due to the high load of organic matter and suspended solids, is a significant problem in the process of its treatment. In this work, we examined the method of treating this wastewater using coagulation with hydrogen peroxide and the Fenton process. Treatment variants included the use of variable Fe2+/H2O2 ratios of 1:5–1:30, variable doses of 3–18.0 g/L H2O2, and 5–10 mL/L of coagulant PIX 113. The calculated reduction degrees showed that, regardless of the treatment variant used, the greatest reduction was obtained for turbidity (100%), phosphorus (99%), followed by color (97%), chemical oxygen demand (70%), and Kjeldahl nitrogen (48%). The proposed treatment options can be used as a preliminary stage in treating wastewater from the production of meat and bone meal.
EN
This paper discusses the idea of combining a photovoltaic system with a heating film system to heat residential buildings. The analysis was performed for a newly built single-family house in Warsaw or its vicinity. The authors have selected the size of the photovoltaic installation, calculated the costs incurred by the user for the installation of a hybrid system, which were additionally compared to the cost of installing a gas installation (gas boiler) used for heating the building. The calculations were made for a single-family house with a usable area of 120 m2, the demand for utility energy for heating purposes in the newly built house was in the range of 10–50 kWh/m2/year. Based on the adopted parameters, the authors evaluated the economic efficiency of both investments (solutions) determining their net present values (NPV). The analysis takes the energy needed only for heating purposes into account. NPV for a heating system with a gas boiler with an investment outlay EUR 8,000 for buildings purchased for utility energy in the amount of 20 kWh/m2/year and the price for natural gas EUR 0.04 /kWh will be EUR –10,500 (for 15 years, discount rate r = 3%). For the same thermal needs (energy required) of the building, NPV for heating films + photovoltaic (HF + PV) will amount to – EUR 8,100. Comparing the variants will get a EUR 2,400 higher NPV for HF + PV. With a utility energy demand for heating purpose of 50 kWh/m2/year and gas heating installation investment cost of EUR 7,000, the NPV for both variants will be equal for natural gas price = EUR 0.035/kWh.
PL
W niniejszym artykule zaprezentowano możliwości ogrzewania budynku mieszkalnego z zastosowaniem hybrydowego współdziałania systemu fotowoltaiki wraz z systemem folii grzewczych. Analizę przeprowadzono dla nowo wybudowanego domu jednorodzinnego w okolicach Warszawy. Autorzy dokonali wyboru wielkości instalacji fotowoltaicznej, obliczyli koszty poniesione przez użytkownika w celu montażu systemu hybrydowego, które dodatkowo porównali do kosztów montażu instalacji gazowej (kocioł gazowy) służącej do ogrzewania niniejszego budynku. Obliczenia wykonano dla domu jednorodzinnego o powierzchni użytkowej 120 m2, zapotrzebowanie na energię użytkową do celów grzewczych w zakresie 10–50 kWh/m2/rok. Na podstawie przyjętych parametrów autorzy ocenili efektywność ekonomiczną obu inwestycji (rozwiązań: fotowoltaika + folie grzewcze, ogrzewanie gazowe) wyznaczając ich wartości bieżące netto (NPV). W analizie uwzględniono tylko energię potrzebną na cele grzewcze. NPV dla instalacji grzewczej z kotłem gazowym o nakładzie inwestycyjnym 8000 EUR dla budynku o zapotrzebowaniu na energię użytkową w ilości 20 kWh/m2/rok i cenie za gaz ziemny 0,04 EUR/kWh wyniesie –10 500 EUR (na 15 lat, stopa dyskonta r = 3%). Dla analogicznych potrzeb cieplnych budynku, NPV dla folii grzewczych + fotowoltaika (HF + PV) wyniesie –8100 EUR. Porównując warianty, wyższe NPV o 2400 EUR zostanie osiągnięte dla wariantu HF + PV. W przypadku zapotrzebowania na energię użytkową na potrzeby grzewcze na poziomie 50 kWh/m2/rok, przy nakładach inwestycyjnych 7000 EUR. wartości NPV dla obu wariantów będą równe przy cenie gazu ziemnego 0,035 EUR/kWh.
EN
In the years 2021-2023, Poland and Europe experienced unprecedented increases in energy prices in the last dozen or so years, leading to shifts in the economic perception of renewable energy sources. PV installations have achieved a simple payback time (SPBT) of less than 10 years, also prompting a consideration installation solar thermal collectors. The study analyzed selected micro-scale renewable energy installations (photovoltaic, wind turbine, solar thermal collector) and estimated simple payback times for individual potential investments in these installations. The analyses revealed that PV installations currently have the shortest payback time, but this trend might evolve in the future due to the lowest daily energy prices coinciding with the highest energy production values from PV installations. In the years 2016-2023, the lowest SPBT value was attained for photovoltaics. However, in 2022, a similar SPBT value was achieved for solar thermal installations, replacing natural gas sources. PV and solar thermal technologies are also viable for micro-installations, with lower associated risks related to productivity, such as specific yields influenced by geographical and weather conditions, as well as terrain and landscape features, especially for small turbine turbines.
PL
W latach 2021 — 2023 W Polsce i W Europie wystąpiły niespotykane W ostatnich kilkunastu latach wzrosty cen energii, które spowodowały zmiany W postrzeganiu ekonomicznym źródeł typu OZE. Instalacje PV osiągnęły prosty czas zwrotu (SPBT) poniżej 10 lat, a dla solar thermal wrócił czas do rozważania tego typu urządzeń. W pracy przeanalizowano wybrane instalacje OZE (photovoltaic, wind turbine, solar thermal collector) W skali mikro oraz oszacowane proste czasy zwrotu dla poszczególnych potencjalnych inwestycji W instalacje. W wyniku analiz instalacje PV mają najkrótszy czas zwrotu, jednak W przyszłości może się to zmienić ze względu na trend W zakresie występowania najniższych cen energii W skali doby przy najwyższych wartościach produkcji energii z instalacji PV. W latach 2016 — 2023 najniższa wartość SPBT osiągalna była dla fotowoltaiki, jednak W 2022 podobna wartość SPBT została osiągnięta dla instalacji solar thermal zastępującej źródła natural gas. PV i solar thermal to także technologie, których zastosowanie W skali mikroinstalacji nie Wiąże się z dużym ryzykiem związanym z produktywnością (specific yields) np. spowodowanych warunkami geograficznymi i pogodowymi, a także ukształtowaniem terenu i kraj obrazu (szczególnie dla małych Wind turbines).
EN
There are many financial ways to intensify the construction of new renewable energy sources installations, among others: feed in tariff, grants. An example of photovoltaic grant support in Poland is the “Mój Prąd” [My Electricity] program created in 2019. This program, with a budget of PLN 1 billion, is intended for households in which installations with a capacity range of 2–10 kWp have been installed. During its first edition 27,187 application were submitted. Over 98% of installations cost less than PLN 6,000/kWp. The total installed capacity is 151.3 MWp, which gives the average amount of co-funding per unit of power at the level of PLN 884.7/kWp. The average power of the installation on the national scale is 5.57 kWp, the indicator per 1000 inhabitants is 3.94 kWp, and per unit of area is 0.484 kWp/km2. These installations will produce around 143.5 GWh of electricity annually, contributing to the reduction of CO2 emissions by approximately 109,800 Mg per year. Most applications came from the Silesian Province (3855), which translated into the largest installed capacity of 21.82 MWp, as well as 4.81 kWp/1000 inhabitants and 1.77 kWp/km2 (over 3 times higher than the average in Poland).The installed capacity in the individual province was closely correlated with the population of the province (correlation coefficient – 0.95), while the installed capacity indicator per 1,000 inhabitants with insolation (0.80). The highest power ratio per 1000 inhabitants was achieved in the Podkarpackie Province and amounted to 5.05, and the lowest in the West Pomeranian Province (2.41).
PL
Istnieje wiele finansowych sposobów na intensyfikowanie budowy nowych instalacji OZE, m.in.: taryfa gwarantowana, dotacje. Przykładem grantowego wsparcia fotowoltaiki w Polsce jest powstały w 2019 roku program „Mój Prąd”. Program ten, z budżetem 1 mld zł, jest przeznaczony dla gospodarstw domowych, w których zostały zainstalowane instalacje z przedziału mocy 2–10 kWp. Podczas jego pierwszej edycji zgłoszonych było 27 187 instalacji. Ponad 98% instalacji kosztowało mniej niż 6000 zł/kWp (z czteropunktową punktacją). Całkowita moc zainstalowana to 151,3 MWp, co daje średnią wielkość dofinansowania w przeliczeniu na moc na poziomie 884,7 zł/kWp. Średnia moc instalacji w skali kraju to 5,57 kWp, wskaźnik na 1000 mieszkańców to 3,94 kWp, a na jednostkę powierzchni 0,484 kWp/km2. Instalacje te pozwolą na wyprodukowanie ok. 143,5 GWh energii elektrycznej rocznie, przyczyniając się do redukcji emisji CO2 o ok. 109 800 Mg rocznie. Najwięcej wniosków pochodziło z woj. śląskiego (3855), co przełożyło się na największą moc zainstalowaną 21,82 MWp oraz wskaźnik 4,81 kWp/1000 mieszkańców i 1,77 kWp/km2 (ponad 3-krotnie wyższy niż średnia w Polsce). Zainstalowana moc w poszczególnych województwach była ściśle skorelowana z liczbą ludności województwa (współczynnik korelacji – 0,95), a wskaźnik mocy zainstalowanej na 1000 mieszkańców – z nasłonecznieniem (0,80). Najwyższy wskaźnik mocy/1000 mieszkańców (PPI) został osiągnięty w woj. podkarpackim i wyniósł 5,05, a najniższy w woj. zachodniopomorskim (2,41).
EN
The operation of thermal devices and installations, in particular heat exchangers, is associated with the formation of various deposits of sediments, forming the boiler scale. The amount of precipitate depends on the quality of the flowing liquids treatment, as well as the intensity of the use of devices. There are both mechanical and chemical treatment methods to remove these deposits. The chemical methods of boiler scale treatment include the cleaning method consisting in dissolving boiler scale inside heat devices. Worked out descaling concentrate contains phosphoric acid (V) and the components that inhibit corrosion, anti-foam substances, as well as anti-microbial substances as formalin, ammonium chloride, copper sulphate and zinc sulfate. Dissolution of the boiler scale results in the formation of wastewater which can be totally utilized as raw materials in phosphoric fertilizer production. As a result, both the preparation produced and its use are entirely free from waste.
EN
In less than a decade, the photovoltaic sector has transformed into a global business. The dynamics of its development vary depending on the country. According to estimates, the value of the photovoltaic micro-installations market in Poland at the end of 2019 exceeded PLN 2.8 billion. In the first half of 2020, the PV sector recorded dynamic growth with a total capacity of the micro-installations of 2.5 GWp. Government subsidies were among the factors contributing to the expansion of the PV sector. In Poland, there are many financial ways to intensify the construction of new renewable energy source installations, among others: feed-in tariff, grants, and loans. An example of photovoltaic grant support in Poland is the “Mój Prąd” [My Electricity] program created in 2019 with a budget of PLN 1.1 billion. The interest in the “My Electricity” program in individual provinces may vary, depending on socio-economic factors, technological and environmental resources, and the level of innovation. The research motivation of this article is a comparison of provinces in Poland according to selected energy, environmental, innovation, and socio-economic indicators and to show how these factors affect individual interest in the “My Electricity” photovoltaic development program in provinces. The highest correlation is for the total installation power under the “My Electricity” program and Gross Domestic Product and Human Developed Index. The highest correlation coefficient from RIS indicators and photovoltaic data programs was achieved for “R&D expenditure in the business sector”. The population was closely correlated with the total installation power and the grant value of the “My Electricity” program.
PL
W ciągu niecałej dekady sektor fotowoltaiczny przekształcił się w globalny biznes. Dynamika jego rozwoju jest zróżnicowana w zależności od państwa. Według szacunków wartość rynku mikroinstalacji fotowoltaicznych w Polsce na koniec 2019 roku przekroczyła 2,8 mld zł. W I półroczu 2020 roku dynamicznie rozwijał się sektor PV, dla którego łączna moc mikroinstalacji wyniosła 2,5 GWp. Dotacje rządowe były jednym z czynników przyczyniających się do ekspansji sektora PV. W Polsce istnieje wiele możliwości finansowych zintensyfikowania budowy nowych instalacji odnawialnych źródeł energii, m.in.: system taryf, dotacje, pożyczki. Przykładem wsparcia w postaci dotacji dla rozwoju fotowoltaiki w Polsce jest stworzony w 2019 roku program „Mój Prąd” z budżetem 1,1 mld zł. Zainteresowanie programem „Mój Prąd” w poszczególnych województwach może być zróżnicowane w zależności od czynników społeczno-ekonomicznych, zasobów technologicznych i środowiskowych oraz poziomu innowacyjności. Motywacją dla powstania artykułu było porównanie województw w Polsce według wybranych wskaźników energetycznych, społeczno-ekonomicznych, środowiskowych i innowacyjności oraz analiza wpływu tych czynników na zainteresowanie programem rozwoju fotowoltaiki „Mój Prąd” w województwach. Występuje wysoka korelacja dla całkowitej mocy instalacji w ramach programu „Mój Prąd” oraz produktu krajowego brutto (PKB) i wskaźnika rozwoju społecznego (HDI). Najwyższy współczynnik korelacji spośród wskaźników RIS i danych programowych dotacji uzyskano dla „nakładów na działalność badawczo-rozwojową w sektorze przedsiębiorstw”. Liczba ludności była ściśle skorelowana z łączną mocą instalacji oraz wartością dotacji w ramach programu „Mój Prąd”.
EN
Electric vehicles (EVs) are playing an increasingly important role in the overall vehicle mix both globally and in Poland. The article contains an analysis of the electric car market analysing the occupancy of electric car charging points at different times of the day and the demand for power based on Poland’s experience in this field. Forecasts for the development of the market of broadly understood electromobility were analysed. The authors carried out research on the availability of public charging points for electric cars in Poland. The research determined the number of occupied charging points on working days and on non–working days, as well as the maximum number of single charging processes registered in individual months (September 2021–January 2022). As part of the analysis carried out in the article, the authors showed how much of a burden the current state of the electric vehicle market has on the Polish power system, taking into account the existing number of vehicles and their demand for charging power at publicly available stations. In addition, a simulation was carried out to determine how big changes in the load on the power system will mean an increase in the number of electric vehicles. Moreover, the authors indicated the hours of occurrence of a higher number of electric vehicle recharges per day and the number of occupied charging points. These data were collated and compared with the average power demand values in Poland. The study also explored potential strategies to mitigate the strain on the power grid, such as optimising charging times and enhancing grid capacity. The results underscore the need for proactive measures to ensure that the growth of electric vehicles does not compromise the reliability of the national power system.
PL
Pojazdy elektryczne (EV) odgrywają coraz ważniejszą rolę w ogólnym miksie pojazdów zarówno na świecie, jak i w Polsce. Artykuł zawiera analizę rynku samochodów elektrycznych, analizując zajętość punktów ładowania samochodów elektrycznych w różnych porach dnia oraz zapotrzebowanie na energię na podstawie doświadczeń Polski w tym zakresie. Przeanalizowano prognozy rozwoju rynku szeroko rozumianej elektromobilności. Autorzy przeprowadzili badania dostępności publicznych punktów ładowania samochodów elektrycznych w Polsce. W ramach badań określono liczbę zajętych punktów ładowania w dni robocze i dni wolne od pracy, a także maksymalną liczbę pojedynczych ładowań rejestrowanych w poszczególnych miesiącach (wrzesień 2021–styczeń 2022). W ramach analizy przeprowadzonej w artykule autorzy pokazali, jak duży wpływ na polski system energetyczny ma obecny stan rynku pojazdów elektrycznych, biorąc pod uwagę istniejącą liczbę pojazdów i ich zapotrzebowanie na moc ładowania na ogólnodostępnych stacjach. Ponadto przeprowadzono symulację mającą na celu określenie, jak duże zmiany obciążenia systemu elektroenergetycznego będą oznaczać wzrost liczby pojazdów elektrycznych. Ponadto autorzy wskazali godziny występowania większej liczby ładowań pojazdów elektrycznych w ciągu doby oraz liczbę zajętych punktów ładowania. Dane te zestawiono i porównano ze średnimi wartościami zapotrzebowania na moc w Polsce. W badaniu zbadano również potencjalne strategie łagodzenia obciążenia sieci energetycznej, takie jak optymalizacja czasów ładowania i zwiększanie przepustowości sieci. Wyniki podkreślają potrzebę proaktywnych działań, aby zapewnić, że wzrost liczby pojazdów elektrycznych nie wpłynie na niezawodność krajowego systemu elektroenergetycznego.
EN
A domestic hot water (DHW) system has been modernized in a multi-family house, located in the southeastern part of Poland, inhabited by 105 people. The existing heating system (2 gas boilers) was extended by a solar system consisting of 32 evacuated tube collectors with a heat pipe (the absorber area: 38.72 m2). On the basis of the system performance data, the ecological effect of the modernization, expressed in avoided CO2 emission, was estimated. The use of the solar thermal system allows CO2 emissions to be reduced up to 4.4 Mg annually. When analyzing the environmental effects of the application of the solar system, the production cycle of the most material-consuming components, namely: DHW storage tank and solar collectors, was taken into account. To further reduce CO2 emission, a photovoltaic installation (PV), supplying electric power to the pump-control system of the solar thermal system has been proposed. In the Matlab computing environment, based on the solar installation measurement data and the data of the total radiation intensity measurement, the area of photovoltaic panels and battery capacity has been optimized. It has been shown that the photovoltaic panel of approx. 1.8 m2 and 12 V battery capacity of approx. 21 Ah gives the greatest ecological effects in the form of the lowest CO2 emission. If a photovoltaic system was added it could reduce emissions by up to an additional 160 kg per year. The above calculations take also emissions resulting from the production of PV panels and batteries into account.
PL
W budynku wielorodzinnym położonym w południowo-wschodniej części Polski, zamieszkałym przez 105 osób, zmodernizowano system przygotowania ciepłej wody użytkowej. Istniejący system grzewczy (2 kotły gazowe) został rozbudowany o układ kolektorów słonecznych składający się z 32 próżniowych kolektorów rurowych (powierzchnia absorbera wynosi 38,72 m2). Na podstawie danych o wydajności systemu oszacowano ekologiczny efekt modernizacji, wyrażony jako uniknięta emisja CO2. Zastosowanie systemu kolektorów słonecznych pozwala zmniejszyć emisję CO2 do 4,4 Mg rocznie. Analizując skutki środowiskowe zastosowania instalacji kolektorów słonecznych, wzięto pod uwagę cykl produkcyjny najbardziej materiałochłonnych komponentów instalacji, a mianowicie zasobnika ciepłej wody użytkowej i kolektorów słonecznych. Aby jeszcze bardziej ograniczyć emisję CO2, zaproponowano instalację fotowoltaiczną, dostarczającą energię elektryczną do napędu pompy obiegowej instalacji kolektorów słonecznych. W środowisku obliczeniowym Matlab, na podstawie danych pomiarowych z instalacji kolektorów słonecznych i danych pomiarowych całkowitego natężenia promieniowania, zoptymalizowano powierzchnię paneli fotowoltaicznych i pojemność akumulatorów. Wykazano, że układ paneli fotowoltaicznych o powierzchni ok. 1,8 m2 oraz akumulatorów 12 V o pojemności ok. 21 Ah zapewnia największy efekt ekologiczny w postaci najniższej emisji CO2. Dodanie paneli fotowoltaicznych może zmniejszyć roczną emisję CO2 nawet o dodatkowe 160 kg. Powyższe obliczenia uwzględniają również emisje wynikające z tytułu produkcji paneli fotowoltaicznych i akumulatorów.
PL
Wymiar ekonomiczny i środowiskowy produkcji energii przy zastosowaniu odnawialnych technologii
EN
The paper provides substantiation for the idea that interharmonics, though still insufficiently studied in power engineering, are an important element of the complex notion of electromagnetic compatibility of power supply systems. The purpose is to systematize mathematical apparatus for the analysis of interharmonics amplitude-frequency spectrum. Special attention is paid to practical calculations of interharmonics in respect to staple sources of electromagnetic interferences – frequency converters of different types. Certain elements of spectral analysis theory are presented as an efficient tool for the analysis of interharmonics’ levels. The paper analyzes the influence of higher harmonics and interharmonics on the elements of the power supply system at an industrial enterprise, taking into account peculiarities of the construction of external and internal power supply schemes. Typical graphs of electrical loads of the main technological installations are plotted to seek for an individual "trace" in the spectrum of higher harmonic components. The authors present the results of the bench experimental research into the influence of the output frequency of energy converters and the motor shaft torque on the values of higher harmonics and interharmonics. The voltage quality criterion affects the reliability index in the projected transition to decentralized principle of power systems construction and justification of physical mechanisms ensuring rational reliability indicators at low voltage quality. On the basis of the developed dependences, a specified technique is proposed to study electric power losses considering individual schedules of higher harmonics and remoteness of electromagnetic noise source. Recommendations are worked out for the implementation of energy-efficient modes of the enterprise operation, which can be realized by comprehensive consideration of reliability, quality of power supply and optimal flow of reactive power. Recommendations are also provided for the selection of compensating devices based on the number and power of converters.
19
38%
PL
W artykule przedstawiono przegląd dostępnych rozwiązań w zakresie projektowania jak również zarządzania energią pochodzącą z odnawialnych źródeł energii. Narzędzia te obejmują zarówno źródła wytwarzające ciepło jak również energię elektryczną. Wśród tych pierwszych przeanalizowano możliwości programów takich jak: GETSOLAR, SHW, TRNSYS, KOLEKTOREK 2.0. Z kolei w zakresie programów OZE z głównym przeznaczeniem dotyczącym energii elektrycznej wykazano: PVWatts, SAM, RETScreen, HOMER, Hybrid2. Przeanalizowano także rozwiązania opracowane i opublikowane, niezwiązane z typowymi produktami informatycznymi, a realizowane w niededykowanych narzędziach informatycznych. Dowiedziono, że ważnym aspektem w wyborze narzędzi jest uwzględnienie aspektów związanych ze specyfiką polskiego rynku energii. Równie ważna jest prostota obsługi programów oraz gama dostępnych analiz. W tym zakresie programy RETSCreen i HOMER wykazują dużą uniwersalność, z kolei TRNSYS wymaga znacznych umiejętności do prawidłowego użytkowania, co może stanowić znaczną barierę w zakresie dostępności.
EN
The paper presents an overview of available solutions for the design and management of energy from renewable energy sources. These tools include both heat generating sources as well as electricity. Among the first, the possibilities of such programs as: GETSOLAR, SHW, TRNSYS, KOLEKTOREK 2.0 were analyzed. In turn, in the field of renewable energy programs with the main purpose of electricity, the following were shown: PVWatts, SAM, RETScreen, HOMER, Hybrid2. The solutions developed and published, not related to typical IT products, but implemented in non-dedicated IT tools, were also analyzed. It has been proven that an important aspect in the selection of tools is to take into account aspects related to the specificity of the Polish energy market. The ease of use of the programs and the range of available analyzes are no less important. In this regard, the RETSCreen and HOMER programs show great versatility, while TRNSYS requires considerable skills for proper use, which can be a significant barrier in terms of accessibility.
EN
The analysis and assessment of the development of solar energy were carried out and it was noted that the production of solar electricity in the world has increased by more than 15% over the last year. In 2020 there are more than 37 countries with a total photovoltaic capacity of more than one GW, and the share of solar energy in total world electricity production was 8.15%. In the regional context, the largest production of electricity by solar energy sources is in Asia (at the expense of India and China) and North America (USA). The study assesses the main factors in the development of solar energy from the standpoint of environmental friendliness and stability of the electricity supply. The problem of the utilization of solar station equipment in the EU and the US is considered. According to the IPCC, IEA, Solar Power Europe, forecasting the development of solar energy in the world is considered. It is proved that the main factor in assessing the economic efficiency of solar energy production is a regional feature due to natural and climatic conditions (intensity of solar radiation). The use of solar generation is auxiliary for the operation of modern electrical networks as long as the efficiency of photovoltaic cells increases by at least 60–65%. Marginal costs of solar energy are minimal in those countries where active state support is provided. The competitiveness of solar energy is relatively low. However, from the standpoint of replacing energy fuel at a cost of USD 10 per 1 Gcal of solar energy saves 10–20 million tons of conventional fuel. Industrial production of solar electricity at modern solar power plants forms a price at the level of USD 250–450 for 1 MWh.
PL
Przeprowadzono analizę rozwoju energetyki słonecznej w zakresie wzrostu produkcji energii słonecznej na świecie (wzrost w ostatnim roku o ponad 15%). Dane z roku 2020 pokazują, że jest ponad 37 krajów w których łączna moc zainstalowana w fotowoltaice przekracza 1 GW, a udział energii słonecznej w całkowitej światowej produkcji energii elektrycznej wyniósł 8,15%. W kontekście regionalnym największa produkcja energii elektrycznej ze źródeł energii słonecznej występuje w Azji (głównie Chiny i Indie) oraz w Ameryce Północnej (USA). W pracy oceniono główne czynniki rozwoju energetyki słonecznej z punktu widzenia przyjazności dla środowiska i stabilności dostaw energii elektrycznej. Rozważany jest także problem wykorzystania wyposażenia stacji fotowoltaicznych w UE i USA. Z uwzględnieniem IPCC, IEA, Solar Power Europe analizowany jest także aspekt prognozowania rozwoju energetyki słonecznej na świecie. W pracy wykazano, że głównym czynnikiem oceny efektywności ekonomicznej produkcji energii słonecznej jest zróżnicowanie regionalne ze względu na warunki naturalne i klimatyczne (natężenie promieniowania słonecznego). Ponadto wykorzystywanie energii słonecznej ma charakter pomocniczy w pracy nowoczesnych sieci elektrycznych, o ile sprawność ogniw fotowoltaicznych wzrośnie o co najmniej 60–65% (w stosunku do stanu obecnego). Koszty krańcowe wykorzystania energii słonecznej są minimalne w krajach, w których udzielane jest aktywne wsparcie państwa. Natomiast konkurencyjność energii słonecznej jest stosunkowo niska. Ocenia się że zastępując paliwa energetyczne o koszcie 10 USD za 1 Gcal, dzięki energii słonecznej oszczędza się 10–20 mln ton paliwa konwencjonalnego rocznie. Przemysłowa produkcja energii słonecznej w nowoczesnych elektrowniach słonecznych kształtuje się na poziomie 250–450 USD za 1 MWh.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.