Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Background: Stem cells have shown promising potential to treat burn wounds. Erythropoietin was capable of promoting in vitro transdifferentiation of mesenchymal stem cells (MSCs). The aim of the study was to investigate possible role of erythropoietin-pretreated mesenchymal stem cells (EPOa/MSCs) in burn wounds healing and to evaluate its in vivo differentiation into keratinocytes. Materials and methods: Forty rats were utilised in this study divided into four groups (n = 10 for each). Control group (I), burn group (II), burn + MSCs, group (III), burn + EPOa/MSCs. 1 × 10⁶ cells were injected locally for each 1 cm² of burn areas. Burn areas were followed-up morphologically. After 21 days of the experiment, the rats were euthanised, skin specimens were assessed biochemically, histologically and immunohistochemically. Results: EPOa/MSCs enhanced significantly (p < 0.05) burn wound vimentin gene expression and level of interleukin (IL)-10 while decreased IL-1 and COX2 as compared to the burn group. Histologically, EPOa/MSCs improved epithelialisation despite stem cells’ differentiation into keratinocytes was rarely detected by PKH26 red fluorescence. EPOa/MSCs promoted angiogenesis as detected by significant increase in VEGF and PDGF immunoexpression as compared to burn group. Conclusions: EPOa/MSCs may improve burn wound healing, probably through anti-inflammatory, immunomodulatory and angiogenic action. However, in vivo transdifferentiation into keratinocytes was rarely detected. (Folia Morphol 2019; 78, 4: 798–808)
EN
Background: Humans are widely exposed to acrylamide (ACR) and its neurotoxicity is a significant public health issue attracting wide attention. The aim of the study was to investigate ACR-induced adverse cerebellar changes in rats and study the possible oligodendrogenic effect of omega 3 and green tea. Materials and methods: Twenty-four adult albino rats weighing 150–200 g were randomly divided into four equal groups (6 rats each): control group (Group I), the rats that received ACR 45 mg/kg/day (Group II), the rats that received ACR concomitant with omega 3 at a dosage of 200 mg/kg/day (Group III), the rats that received ACR concomitant with green tea dissolved in drinking water at a dosage of 5 g/L (Group IV). The rats were euthanized after 8 weeks of the experiment. Malondialdehyde (MDA) and glutathione (GSH) were measured in cerebellar homogenates. Sections of 5 µm thickness from specimens from the cerebellum were stained with haematoxylin and eosin, silver stain and immunohistochemical stains: platelet-derived growth factor alpha (PDGFα; for oligodendrocytes), glial fibrillary acidic protein (GFAP; for astrocytes) and BCL2 (antiapoptotic). Results: Omega 3 and green tea had improved MDA and GSH as compared to the ACR group. Histologically, the ACR group showed variable degrees of cellular degeneration. Omega 3 had induced oligodendrogenesis in Group III. The optical density of silver stain was significantly (p < 0.05) increased in Groups III and IV as compared to the ACR group. Area per cent of positive PDGFα was significantly increased in the ACR + omega 3 group as compared to the ACR group. Area per cent of positive GFAP was significantly decreased in Groups III and IV as compared to the ACR group. Area per cent of positive BCL2 was significantly increased in the omega 3-trated group as compared to the ACR group. Conclusions: Concomitant administration of omega 3 or green tea with ACR might mitigate the adverse cerebellar changes caused by ACR thanks to an oligodendrogenic effect of omega 3. (Folia Morphol 2019; 78, 3: 564–574)
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.