Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Knowledge about future optical network traffic can be beneficial for network operators in terms of decreasing an operational cost due to efficient resource management. Machine Learning (ML) algorithms can be employed for forecasting traffic with high accuracy. In this paper we describe a methodology for predicting traffic in a dynamic optical network with service function chains (SFC). We assume that SFC is based on the Network Function Virtualization (NFV) paradigm. Moreover, other type of traffic, i.e. regular traffic, can also occur in the network. As a proof of effectiveness of our methodology we present and discuss numerical results of experiments run on three benchmark networks. We examine six ML classifiers. Our research shows that it is possible to predict a future traffic in an optical network, where SFC can be distinguished. However, there is no one universal classifier that can be used for each network. Choice of an ML algorithm should be done based on a network traffic characteristics analysis.
EN
Knowledge about future traffic in backbone optical networks may greatly improve a range of tasks that Communications Service Providers (CSPs) have to face. This work proposes a procedure for long-term traffic forecasting in optical networks. We formulate a long-terT traffic forecasting problem as an ordinal classification task. Due to the optical networks’ (and other network technologies’) characteristics, traffic forecasting has been realized by predicting future traffic levels rather than the exact traffic volume. We examine different machine learning (ML) algorithms and compare them with time series algorithms methods. To evaluate the developed ML models, we use a quality metric, which considers the network resource usage. Datasets used during research are based on real traffic patterns presented by Internet Exchange Point in Seattle. Our study shows that ML algorithms employed for long-term traffic forecasting problem obtain high values of quality metrics. Additionally, the final choice of the ML algorithm for the forecasting task should depend on CSPs expectations.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.