Dynamics of two coupled periodically driven oscillators is analysed. The internal motion is separated off exactly and approximate effective equation of motion is derived. The effective equation of motion is used to study dynamics of the initial dynamical system.
We study dynamics of two coupled periodically driven oscillators in a general case and compare it with two simplified models. Periodic steady-state solutions to these system equations are determined within the Krylov-Bogoliubov-Mitropolsky approach. Amplitude profiles are computed. These two equations, each describing a surface, define a 3D curve – intersection of these surfaces. In the present paper, we analyse metamorphoses of amplitude profiles induced by changes of control parameters in three dynamical systems studied. It is shown that changes of the dynamics occur in the vicinity of singular points of these 3D curves.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.