We investigate countably convex $G_{δ}$ subsets of Banach spaces. A subset of a linear space is countably convex if it can be represented as a countable union of convex sets. A known sufficient condition for countable convexity of an arbitrary subset of a separable normed space is that it does not contain a semi-clique [9]. A semi-clique in a set S is a subset P ⊆ S so that for every x ∈ P and open neighborhood u of x there exists a finite set X ⊆ P ∩ u such that conv(X) ⊈ S. For closed sets this condition is also necessary. We show that for countably convex $G_{δ}$ subsets of infinite-dimensional Banach spaces there are no necessary limitations on cliques and semi-cliques. Various necessary conditions on cliques and semi-cliques are obtained for countably convex $G_{δ}$ subsets of finite-dimensional spaces. The results distinguish dimension d ≤ 3 from dimension d ≥ 4: in a countably convex $G_{δ}$ subset of ℝ³ all cliques are scattered, whereas in ℝ⁴ a countably convex $G_{δ}$ set may contain a dense-in-itself clique.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We prove that in separable Hilbert spaces, in $ℓ_{p}(ℕ)$ for p an even integer, and in $L_{p}[0,1]$ for p an even integer, every equivalent norm can be approximated uniformly on bounded sets by analytic norms. In $ℓ_{p}(ℕ)$ and in $L_{p}[0,1]$ for p ∉ ℕ (resp. for p an odd integer), every equivalent norm can be approximated uniformly on bounded sets by $C^[p]}$-smooth norms (resp. by $C^{p-1}$-smooth norms).
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let T be a power-bounded linear operator in a real Banach space X. We study the equality (*) $(I-T)X = {z ∈ X: sup_{n} ∥∑_{k=0}^{n} T^{k}z∥ < ∞}$. For X separable, we show that if T satisfies and is not uniformly ergodic, then $\overline{(I-T)X}$ contains an isomorphic copy of an infinite-dimensional dual Banach space. Consequently, if X is separable and does not contain isomorphic copies of infinite-dimensional dual Banach spaces, then (*) is equivalent to uniform ergodicity. As an application, sufficient conditions for uniform ergodicity of irreducible Markov chains on the (positive) integers are obtained.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.