Topological and combinatorial properties of dynamical systems called odometers and arising from number systems are investigated. First, a topological classification is obtained. Then a rooted tree describing the carries in the addition of 1 is introduced and extensively studied. It yields a description of points of discontinuity and a notion of low scale, which is helpful in producing examples of what the dynamics of an odometer can look like. Density of the orbits is also discussed.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.