The durability of bearing units of large machines depends mainly on the condition of their welded joints. With this in mind, we developed numerical models of the analyzed bearing units, for which we performed FEM simulations of the stresses in welded joints inseveral basic load cases. In each of the respective variants the technical condition of the bearing nodes was different and it corresponded to the severity of the degradation processes. Different positions of the superstructure in relation to the undercarriage were also taken into account. The simulations used the hot-spot method dedicated to FEM analyses of complex welded structures. We discovered that the loads have a significant influence on the values and distribution of von Mises principal stresses and their axial components. Based on the carried out analyses, we identified the most unfavorable load cases that generate the highest stresses in the welded joints of the assessed nodes. We also demonstrated that the applied method effectively assesses the stresses of welded joints subjected to variable working loads.
The wire-raceway bearings are a subcategory of slewing bearings. Their popularity has recently increased due to their advantages, including weight that is lower than that of other similar slewing bearings, and the ability of transferring various loads, such as axial load, radial load and tilting moment. Currently, metal rings (steel or aluminum) are the most popular choice for all kinds of slewing bearings; however, with advent of additive manufacturing a new ‘chapter’ opens for the development of wire raceway slewing bearings, where the interface between the rolling elements and the raceway is the same as in other bearings (i.e., contact between steel-steel). At the same time, rings can be made from other lightweight materials, such as composites or plastics, with high-level shape customization due to 3D printing. Stress between wire raceways and rings is much lower. Hence, rings’ lower material properties do not significantly affect bearing capacity. Proper calculation methodology should be created to analyze lightweight wire raceway bearings, as materials can differ significantly from typical materials covered by current theories. The paper presents a prototyped 3D-printed bearing with rings made from polylactic acid (PLA). The bearing stiffness is measured and compared with the simplified finite element analysis (FEA) model using the equivalent bearing model with nonlinear springs and beam elements.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.