Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Numerous image processing techniques have been developed for the identification of various types of skin lesions. In real-world scenarios, the specific lesion type is often unknown in advance, leading to a multi-class prediction challenge. The available evidence underscores the importance of employing a comprehensive array of diverse features and subsequently identifying the most important ones as a crucial step in visual diagnostics. For this purpose, we addressed both binary and five-class classification tasks using a small dataset, with skin lesions prevalent in Lithuania. The model was trained using a rich set of 662 features, encompassing both conventional image features and graph-based ones, which were obtained from the superpixel graph generated using Delaunay triangulation. We explored the influence of feature importance determined by SHAP values, resulting in a weighted F1-score of 92.48% for the two-class classification and 71.21% for the five-class prediction.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.