In the framework of ZF (Zermelo-Fraenkel set theory without the Axiom of Choice) we provide topological and Boolean-algebraic characterizations of the statements "2R is countably compact" and "2R is compact".
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We show that: (1) It is provable in ZF (i.e., Zermelo-Fraenkel set theory minus the Axiom of Choice AC) that every compact scattered T2 topological space is zero-dimensional. (2) If every countable union of countable sets of reals is countable, then a countable compact T2 space is scattered iff it is metrizable. (3) If the real line R can be expressed as a well-ordered union of well-orderable sets, then every countable compact zero-dimensional T2 space is scattered. (4) It is not provable in ZF+¬AC that there exists a countable compact T2 space which is dense-in-itself.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.