Let Λ be an artin algebra. We prove that for each sequence $(h_{i})_{i∈ ℤ}$ of non-negative integers there are only a finite number of isomorphism classes of indecomposables $X ∈ 𝓓^{b}(Λ)$, the bounded derived category of Λ, with $length_{E(X)}H^{i}(X) = h_{i}$ for all i ∈ ℤ and E(X) the endomorphism ring of X in $𝓓^{b}(Λ)$ if and only if $𝓓^{b}(Mod Λ)$, the bounded derived category of the category $Mod Λ$ of all left Λ-modules, has no generic objects in the sense of [4].
Given a convex algebra ∧0 in the tame finite-dimensional basic algebra ∧, over an algebraically closed field, we describe a special type of restriction of the generic ∧-modules.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let Λ be a finite dimensional algebra over an algebraically closed field k and Λ has tame representation type. In this paper, the structure of Hom-spaces of all pairs of indecomposable Λ-modules having dimension smaller than or equal to a fixed natural number is described, and their dimensions are calculated in terms of a finite number of finitely generated Λ-modules and generic Λ-modules. In particular, such spaces are essentially controlled by those of the corresponding generic modules.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.