We prove three results concerning convolution operators and lacunary maximal functions associated to dilates of measures. First we obtain an H¹ to $L^{1,∞}$ bound for lacunary maximal operators under a dimensional assumption on the underlying measure and an assumption on an $L^p$ regularity bound for some p > 1. Secondly, we obtain a necessary and sufficient condition for L² boundedness of lacunary maximal operator associated to averages over convex curves in the plane. Finally we prove an $L^p$ regularity result for such averages. We formulate various open problems.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let K be a Calderón-Zygmund kernel and P a real polynomial defined on ℝⁿ with P(0) = 0. We prove that convolution with Kexp(i/P) is continuous on L²(ℝⁿ) with bounds depending only on K, n and the degree of P, but not on the coefficients of P.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.