For effective waste management of mining industries is important to investigate their physical and mineralogical changes. For this purpose, X-raydiffraction (XRD), thermogravimetry (TG), derivative thermogravimetry (DTG), and differential thermal analysis (DTA) methods were used. Changes in the contents of mobile forms of heavy metals in rocks were investigated using an acetate-ammonium buffer solution with a pH of 4.8 after burning rocks at a temperature of 800–850°C. The obtained data indicated the significant role of the mineral composition in the thermal behavior of the rock samples and the subsequent influence of the thermal processes on the changes in the bioavailability of heavy metals.
Basing on the mathematical model developed with the account of influence of bottom sediments, the parameters of benzene migration in the river caused by one-time discharge into the Stryi River were investigated. The mathematical model of migration consists of two equations that describe the movement of pollutants in the river system, taking into account the flow rate, diffusion, sorption and desorption of the pollutant by the bottom sediments of the river. The parameters of benzene distribution in the "water-bottom sediments" system were experimentally determined under laboratory conditions. With the help of computer modeling, the temporal and spatial distributions of benzene in water and bottom sediments were obtained. The regularities of benzene concentration change depending on the composition of the bottom sediments of the river have been established. The dependencies can be extrapolated to other river systems and pollutants.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.