Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Mixing via families for measure preserving transformations
100%
EN
In topological dynamics a theory of recurrence properties via (Furstenberg) families was established in the recent years. In the current paper we aim to establish a corresponding theory of ergodicity via families in measurable dynamical systems (MDS). For a family ℱ (of subsets of ℤ₊) and a MDS (X,𝓑,μ,T), several notions of ergodicity related to ℱ are introduced, and characterized via the weak topology in the induced Hilbert space L²(μ). T is ℱ-convergence ergodic of order k if for any $A₀,...,A_{k}$ of positive measure, $0 = e₀ < ⋯ < e_{k}$ and ε > 0, ${n ∈ ℤ₊: |μ(⋂_{i=0}^{k} T^{-ne_{i}}A_{i}) - ∏_{i=0}^{k} μ(A_{i})| < ε} ∈ ℱ$. It is proved that the following statements are equivalent: (1) T is Δ*-convergence ergodic of order 1; (2) T is strongly mixing; (3) T is Δ*-convergence ergodic of order 2. Here Δ* is the dual family of the family of difference sets.
2
Content available remote When every point is either transitive or periodic
100%
EN
We study transitive non-minimal ℕ-actions and ℤ-actions. We show that there are such actions whose non-transitive points are periodic and whose topological entropy is positive. It turns out that such actions can be obtained by perturbing minimal systems under some reasonable assumptions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.