For a σ-ideal I of sets in a Polish space X and for A ⊆ $X^2$, we consider the generalized projection 𝛷(A) of A given by 𝛷(A) = {x ∈ X: A_x ∉ I}, where $A_x$ ={y ∈ X: 〈x,y〉∈ A}. We study the behaviour of 𝛷 with respect to Borel and analytic sets in the case when I is a $∑_{2}^{0}$-supported σ-ideal. In particular, we give an alternative proof of the recent result of Kechris showing that 𝛷 [$∑_{1}^{1}(X^2)]=∑_{1}^{1}(X)$ for a wide class of $∑_{2}^{0}$-supported σ-ideals.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let X, Y be uncountable Polish spaces and let μ be a complete σ-finite Borel measure on X. Denote by K and L the families of all meager subsets of X and of all subsets of Y with μ measure zero, respectively. It is shown that the product of the ideals K and L restricted to C-sets of Selivanovskiĭ is σ-saturated, which extends Gavalec's results.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let K(X) be the hyperspace of a compact metric space endowed with the Hausdorff metric. We give a general theorem showing that certain subsets of K(X) are true $F_{σδ}$ sets.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We introduce and examine the notion of dense weak openness. In particular we show that multiplication in C(X) is densely weakly open whenever X is an interval in ℝ.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let C denote the Banach space of real-valued continuous functions on [0,1]. Let Φ: C × C → C. If Φ ∈ {+, min, max} then Φ is an open mapping but the multiplication Φ = · is not open. For an open ball B(f,r) in C let B²(f,r) = B(f,r)·B(f,r). Then f² ∈ Int B²(f,r) for all r > 0 if and only if either f ≥ 0 on [0,1] or f ≤ 0 on [0,1]. Another result states that Int(B₁·B₂) ≠ ∅ for any two balls B₁ and B₂ in C. We also prove that if Φ ∈ {+,·,min,max}, then the set $Φ^{-1}(E)$ is residual whenever E is residual in C.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We construct algebras of sets which are not MB-representable. The existence of such algebras was previously known under additional set-theoretic assumptions. On the other hand, we prove that every Boolean algebra is isomorphic to an MB-representable algebra of sets.
7
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW