Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The method of fabricating metal matrix composites plays a crucial role in obtaining dense materials characterized by high wear resistance. The present work describes an attempt to produce NiAl/CrB2 composites using the next generation spark plasma sintering (SPS) method, i.e. upgraded field assisted sintering technology (U-FAST) technique. Microstructure characterization was performed by means of scanning (SEM) and transmission (TEM) electron microscopy. The SEM microstructure investigations of the NiAl model material proved practically full densification of the material sintered at 1200°C and 1300°C, even if remnants of surplus nickel were observed at the boundaries of rounded NiAl grains. The NiAl/CrB2 composites, besides fused NiAl and CrB2 grains, showed the presence of a raised level of nickel also at the grain boundaries. The TEM microstructure observations helped to establish that even if the grain boundaries were pinned by nickel-rich precipitates, some increase in grain growth took place, as evidenced by the fact that strings of smaller precipitates were also visible outside the matrix grain boundaries. All these microstructure investigations indicate that the newly elaborated U-FAST technique is evidently capable of producing compacts free of porosity at lower temperatures and during a shorter time than solid hot pressing or vacuum sintering in a semiliquid state.
EN
The lack of room-temperature ductility of high-strength TiAl-based alloys called for complicated high temperature processing limiting their application areas. Introduction of additive manufacturing (AM) methods allowed to circumvent this disadvantage, but entailed microstructure refinement affecting, among the others, their oxidation resistance. The dry-air high temperature oxidation processing of TiAl-based alloys is relatively well covered for coarse grained materials, but to what extent the TiAl alloys are affected by the changes caused by the AM remains to be found out. Additionally, the role of nitrogen during these processes was to large extent omitted in previous works. Within the present experiment, the mould cast (MC) and the electron beam melted (EBM) Ti-48Al-2Nb-0.7Cr-0.3Si (at. %) RNT650 alloys were dry-air oxidized at 650°C for 1000 h. The TEM/EDS investigations allowed to confirm that the scale formed during such treatment consists of the layers occupied predominantly by TiO2+Al2O3/TiO2/Al2O3 sequence. Additionally, it was shown that N diffuses to the sub-scale and reacts with the substrate forming two distinct discontinuous sub-layers of α2-Ti3Al(N) and TiN. The scale over EBM was noticeably less porous and nitrogen penetration of the substrate was more extensive, while the MC showed higher susceptibility to local sub-scale oxidation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.