Q-learning algorithm in its standard form is limited by discrete states and actions. In order to improve quality of the control the algorithm must be modified to enable direct use of continuous variables. One possible way, presented in the paper, is to replace the table, by suitable approximator.
PL
Algorytm metody Q-learning w swej standardowej formie jest ograniczony przez dyskretne stany i działania. W celu ulepszenia jakości sterowania algorytm ten trzeba zmodyfikować, aby umożliwić bezpośrednie wykorzystanie zmiennych ciągłych. Jednym z możliwych sposobów jest przedstawione w artykule zastąpienie tablicy odpowiednim aproksymatorem.
The paper compares global end local approximation methods used in inverse problems. Global approximators are represented by feedforward multilayer neural network (FFNN); local approximators are represented by Locally Weighted Regression (LWR) and Receptive Field Weighted Regression (RFWR).
PL
W artykule porównano metody globalnej i lokalnej aproksymacji w zagadnieniach odwrotnych. Aproksymatory globalne reprezentuje wielowarstwowa sieć neuronowa ze sprzężeniem do przodu (FFNN), natomiast aproksymatory lokalne regresja lokalnie ważona (LWR) oraz regresja ważona pola otwartego (RFWR).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.