Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Some boundedness results for systems of two rational difference equations
100%
|
|
tom 8
|
nr 6
1058-1090
EN
We study k th order systems of two rational difference equations $$ x_n = \frac{{\alpha + \sum\nolimits_{i = 1}^k {\beta _i x_{n - 1} + } \sum\nolimits_{i = 1}^k {\gamma _i y_{n - 1} } }} {{A + \sum\nolimits_{j = 1}^k {B_j x_{n - j} + } \sum\nolimits_{j = 1}^k {C_j y_{n - j} } }}, y_n = \frac{{p + \sum\nolimits_{i = 1}^k {\delta _i x_{n - i} + } \sum\nolimits_{i = 1}^k {\varepsilon _i y_{n - i} } }} {{q + \sum\nolimits_{j = 1}^k {D_j x_{n - j} + } \sum\nolimits_{j = 1}^k {E_j y_{n - j} } }} n \in \mathbb{N} $$. In particular, we assume non-negative parameters and non-negative initial conditions, such that the denominators are nonzero. We develop several approaches which allow us to extend well known boundedness results on the k th order rational difference equation to the setting of systems in certain cases.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.