Given a locally compact abelian group G with a measurable weight ω, it is shown that the Beurling algebra L¹(G,ω) admits either exactly one uniform norm or infinitely many uniform norms, and that L¹(G,ω) admits exactly one uniform norm iff it admits a minimum uniform norm.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let ω be a weight on an LCA group G. Let M(G,ω) consist of the Radon measures μ on G such that ωμ is a regular complex Borel measure on G. It is proved that: (i) M(G,ω) is regular iff M(G,ω) has unique uniform norm property (UUNP) iff L¹(G,ω) has UUNP and G is discrete; (ii) M(G,ω) has a minimum uniform norm iff L¹(G,ω) has UUNP; (iii) M₀₀(G,ω) is regular iff M₀₀(G,ω) has UUNP iff L¹(G,ω) has UUNP, where M₀₀(G,ω) := {μ ∈ M(G,ω) : μ̂ = 0 on Δ(M(G,ω))∖Δ(L¹(G,ω))}.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this brief account we present the way of obtaining unbounded *-representations in terms of the so-called "unbounded" C*-seminorms. Among such *-representations we pick up a special class with "good behaviour" and characterize them through some properties of the Pták function.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let 0 < p ≤ 1, let ω: ℤ → [1,∞) be a weight on ℤ and let f be a nowhere vanishing continuous function on the unit circle Γ whose Fourier series satisfies $∑_{n∈ℤ} |f̂(n)|^{p}ω(n) < ∞$. Then there exists a weight ν on ℤ such that $∑_{n∈ℤ} |\widehat{(1/f)}(n)|^{p} ν(n) < ∞$. Further, ν is non-constant if and only if ω is non-constant; and ν = ω if ω is non-quasianalytic. This includes the classical Wiener theorem (p = 1, ω = 1), Domar theorem (p = 1, ω is non-quasianalytic), Żelazko theorem (ω = 1) and a recent result of Bhatt and Dedania (p = 1). An analogue of the Lévy theorem at the present level of generality is also developed. Given a locally compact group G with a continuous weight ω and 0 < p < 1, the locally bounded space $L^{p}(G,ω)$ is closed under convolution if and only if G is discrete if and only if G admits an atom. This generalizes and refines another result of Żelazko.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.