Nondestructive methods to estimate leaf area (LA) by leaf length (L) and/or width (W) are useful in plant physiology and ecology studies. However, both environmental and ontogenic factors may influence leaf size and/or shape, which may alter the coefficient of LA models. We carried an investigation along an altitudinal gradient in the Sergyemla Mountains, southeast Tibet. In August 2009, we selected nine sites at about every 50 m in altitude from 4,250 m to 4,640 m a.s.l. A total of 4,245 different leaf-aged Rhododendron aganniphum var. schizopeplum (a dominant overstory species) leaves were measured. Compared with the single dimensional models, the two-dimensional model encompassing both L and W (model 5) reflected higher R2 (0.98–0.99) and lower MSE (1.19–3.21) across different leaf age groups for each site, implying that such model could provide the best fit for LA estimation. Analysis of covariance further illustrated that two leaf dimensions model was irrespective of leaf age effects in eight out of the nine sites. Leaf shape (L:W ratio) varied between sites and tended to decrease at higher altitudes (4500–4640 m a.s.l.), leading to significant differences in coefficients of the two-dimension model between every two adjacent sites. For overstory species in alpine habitats, altitude rather than leaf age may affect leaf shape which alters the coefficients of LA estimation models. Since leaf shape of different species (overstory species versus understory ones) may show different responses to a certain environmental gradient, researchers must pay attention to the variation of leaf shape when estimating species-specific LA by measuring L and W, especially when leaves of the top overstory species were collected at different sites.
In order to rationalize the development and utilization of the wall rock discarded during rare earth mining, chemical analysis, inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction analysis, artificial panning, optical microscope analysis, mineral liberation analysis and energy-dispersive spectroscopy were used to study the process mineralogy of the wall rock. The results show that the main useful elements in the rare earth wall rock were iron, light rare earth elements, fluorine and niobium. Iron was mainly occurrence as magnetic iron in magnetite, rare earth elements in bastnaesite and monazite, fluorine as a independent mineral in fluorite and niobium in columbite. The main useful minerals were finely disseminated, with magnetite (48.16%), bastnaesite (49.04%), monazite (42.18%), fluorite (39.30%) and columbite (63.26%) distributed in -0.030 mm particle size. The useful minerals were evaluated separately for beneficiation based on the process mineralogical characteristics of the rare earth wall rock, and the results showed that magnetite, rare earth and fluorite resources could be effectively recovered using magnetic separation, flotation, gravity concentration and leaching enrichment methods. The sequential recovery of iron, rare earth, fluorine and niobium elements produces iron concentrate (65.40% TFe at recovery of 38.03%), rare earth concentrate (50.66% REE at recovery of 62.73%), fluorite concentrate (95.23% CaF2 at recovery of 40.34%) and niobium iron ore concentrate (1.63% Nb2O5 at recovery of 5.56%). This study provides recommendations for the rational development and utilization of rare earth wall rock and provides reasonable levels of recovery predictions.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.