Let G be an abelian group and ◻ G its square subgroup as defined in the introduction. We show that the square subgroup of a non-homogeneous and indecomposable torsion-free group G of rank two is a pure subgroup of G and that G/◻ G is a nil group.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.