Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
As a result of the Russian armed aggression, Ukraine has lost almost a third of its accumulated fresh water reserves worth more than USD18 billion. It has caused a loss of access to quality drinking water for 6 million people in Ukraine and more that 13 million people have a limited access to water for satisfying sanitary and hygienic needs. The situation is complicated due to the destruction of the Kakhovka hydroelectric power station dam which has led to a large-scale man-made disaster, severe negative environmental and socioeconomic consequences, the beginning of natural-climatic transformations of the drained water reservoir. The article presents comprehensive research of the state of the Kakhovka Reservoir functioning before and after the destruction of the hydroelectric power station dam on the basis of the facts and the results of decoded satellite imagery of Sentinel 2, Sentinel-3 and Landsat 8–9. It was found that the water reservoir drainage has caused disruption of microclimatic conditions, an increase in the air temperature by 2.0 °С and more, accelerated evapotranspiration by 1.41–2.04 times, exacerbation of water scarcity in 58.2% of the territory of the drained water area and in the adjacent territories. About 52.0% of the territory of the drained water reservoir has stressful conditions of natural-climatic functioning. The obtained results confirm that the formed aboveground plant biomass of bottom landscapes is not capable of creating appropriate microclimatic conditions which existed in the water area of the Kakhovka Reservoir.
EN
The purpose of the research was to calculate water footprint in growing the basic field crops and establish the volumes of additional water accumulation to provide the hydro-functioning of the Sluch river basin in the territory of Ukraine under conditions of climate change. The research was based on the data of climate change analysis in 1901–2022, decoding of the actual satellite imagery of the spacecraft Sentinel 2 and statistical data on crop rotation structure in the agro-landscapes of the water catchment area in the research region. The volumes of water footprint were calculated for the vegetation periods of the basic field winter and spring crops in 2018–2021: 2018–2019 – a semi-wet year grows into a dry year; 2019–2020 – a dry year grows into a semi-wet year; 2020–2021 – a semi-wet year grows into a wet year. Spatio-temporal regularities of the formation of water footprint and the ratio of green and blue water use in growing different agricultural crops were determined. The total volume of water footprint in growing the field crops of a certain crop rotation equaled: in 2018–2019 – 1991 mln m3 , 2019–2020 – 2440 mln m3 , 2020–2021 – 2363 mln m3. The total volume of precipitation in the vegetation period within the river water catchment area was: in 2018–2019 – 3760 mln mм3, 2019–2020 – 4423 mln m3, 2020–2021– 4839 mln m3. The total volume of additional accumulation of green (rain) water in the vegetation period in the agro-landscapes of the river basin equaled: in 2018–2019 – 1769 mln m3, or 47.0% of precipitation in the vegetation period (Pv); 2019–2020 – 1983 mln m3, or 44.8% of Pv; 2020–2021 – 2476 mln m3, or 51.2% of Pv. The proposed research scheme and the obtained results are important for adjusting and substantiating water- and resource-saving agrotechnologies and crop rotations depending on climate change, for determining water balance stability of the river basin in accordance with the indicators of additional accumulation of green water.
EN
Under climate change, the issue of selection and correction of crop cultivation systems in the zone of moisture deficit and risky farming to ensure profitability of production is still topical. In particular, crop rotations are a practice aimed at increasing resistance of soil systems to abiotic and biotic stresses in the zone of moisture deficit. Therefore, the purpose of the research is to identify spatio-temporal regularities of vegetative formation of water balance in winter wheat agrocenoses depending on a pre-crop according to the unified BBCH scale. Spatio-temporal processes of vegetation and water balance formation in winter wheat agrocenosis depending on a pre-crop according to the unified BBCH scale were examined on the basis of the data of decoded satellite image series of the spacecraft Sentinel and calculation of the NDWI and the NDVI values. The research was conducted in the natural-climatic conditions of the Steppe zone of Ukraine, in the territory of Yelanets district, Mykolaiv region, during the vegetative phase of winter wheat variety Driada 1: autumn 2021 and winter, spring and the beginning of summer 2022. It was established that activeness of water balance formation in winter wheat agrocenosis with pea as a pre-crop according to seasonal-phenological stages of plant growth is 3.0–9.0 times higher than with a grain crop (spring barley) and sunflower as pre-crops. In particular, with pea as a pre-crop, the NDVI vegetation of winter wheat plants is 1.6–1.7 times more intensive, the rate of moisture supply NDWI in the plant leaf at the macro-stages BBCH 10–61 is 1.54 and 1.82 times higher, productivity is 1.43–1.56 times higher. We observed a 30.5–34.3% reduction in water consumption for the formation of a ton of winter wheat grain with pea as a pre-crop in comparison with other pre-crops that resulted in an increase in productive moisture reserves at the end of vegetation in a meter soil layer by 20%. It was established that using pea as a pre-crop has economic and environmental benefits that manifest themselves in increasing resistance of soil systems, a reduction in environmental pollution and a rise in profitability of production.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.