Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Following nerve tissue damage, various events, such as inflammatory responses, microglial activation, endoplasmic reticulum stress, and apoptosis, can occur, which all lead to cell death, prevent axonal growth, and cause axonal circumvolution. So far, several researchers have tended to adopt strategies to reduce the harmful conditions associated with neurological disorders, and stem‑cell‑based therapy is one of those promising strategies. Epidermal neural crest stem cells (EPI‑NCSCs) are a type of stem cell that has widely been employed for the treatment of various neurological disorders. It has been suggested that these stem cells perform their supportive actions primarily through the release of different neurotrophic factors. Hence, in this study, the neuroprotective impacts of valproic acid (VPA) and crocin were evaluated on the mRNA expression levels of brain‑derived neurotrophic factor (BDNF) and glial‑cell‑derived neurotrophic factor (GDNF) in EPI‑NCSCs. In this research, we isolated EPI‑NCSCs from the hair follicles of the rat whisker pad. Then, the cells were treated with different concentrations of VPA and crocin for 72 h. Subsequently, an MTT assay was performed to define the suitable concentrations of drugs. Finally, real‑time PCR was performed to evaluate the mRNA expression levels of BDNF and GDNF in these stem cells. The results of the MTT assay showed that the treatment of EPI‑NCSCs with 1 mM VPA and 1.5 mM crocin, and the co‑treatment with 1 mM VPA and 500 µM crocin, led to the survival and proliferation of these stem cells. Moreover, the real‑time PCR results revealed that both VPA and crocin, both individually and in combination, can significantly increase the expression levels of BDNF and GDNF in EPI‑NCSCs. According to the findings of this study, both VPA and crocin, alone and in combination, are potential candidates for enhancing the capacity of EPI‑NCSCs to differentiate into neural lineages. Therefore, the co‑treatment of EPI‑NCSCs with these drugs can be employed for the treatment of various neurological disorders, such as spinal cord injury.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.