We continue our study of topological partial *-algebras, focusing our attention on *-semisimple partial *-algebras, that is, those that possess a multiplication core and sufficiently many *-representations. We discuss the respective roles of invariant positive sesquilinear (ips) forms and representable continuous linear functionals, and focus on the case where the two notions are completely interchangeable (fully representable partial *-algebras) with the aim of characterizing a *-semisimple partial *-algebra. Finally we describe various notions of bounded elements in such a partial *-algebra, in particular, those defined in terms of a positive cone (order bounded elements). The outcome is that, for an appropriate order relation, one recovers the ℳ-bounded elements introduced in previous works.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.