Le but de cette note est de démontrer la solution de problème suivant: L'espace R^q où q>1, contient-il des ensembles ponctiformes qui ne sont homéomorphes à aucun ensemble linéaire?
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
L'objet de cette note est la démonstration du théorème suivant: Il existe dans R_2 un ensemble E conexe qui ne contient aucun sous-ensemble connexe borné.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
L'objectif de cette note est de démontrer la solution de problème suivant donné par Knaster et Kuratowski: Prémisse: A est une ligne de Jordan. Thèse: A contient au moins deux points qui ne le découpent pas.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Le but de cette note est de démontrer la solution du problème suivant: A désignant un continu indécomposable, peut-on déterminer sur A deux points, de manière que A soit un continu irréductible entre ces points?
7
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Ce mémoire contient un exposé systématique des résultats obtenus sur les lignes de Jordan. La plupart de ces resultats a été publiée dans trois notes présentées à la Société des Sciences de Varsovie. (Stefan Mazurkiewicz O arytmetyzacji kontinuów, C. R. Soc. Sc. Varsovie. VI (1913), Stefan Mazurkiewicz O artmetyzacji kontinuów II, C. R. Soc. Sc. Varsovie. VI (1913), Stefan Mazurkiewicz O pewnej klasyfikacji punktów leżących na kontinuach dowolnych, C. R. Soc. Sc. Varsovie. IX (1916).)
10
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Le but de cette note est de démontrer: Théorème: A étant un ensemble fermé situé sur la circonférence |z|=1, que je désignerai par C, il existe: 1. une série de puissances à coefficients tendant vers zéro, convergente dans tout point de A, divergente dans tout point de C-A; 2. une série de puissances à coefficients tendant vers zéro, divergente dans tout point de A, convergente dans tout point de C-A;
11
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Le but de cette note est de démontrer: Théorème: Prémisse: A est un domaine plan. Thèses: il n'existe aucune [il existe une] décomposition A=A_1+A_2 telle que 1. A_1 × A_2 = 0; 2. A_1 et A_2 sont punctiformes; 3. A_1 est F_{σ} (donc A_2 est G_{δ}) [A_1 est F_{σδ} (donc A_2 est G_{σδ})];
12
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
L'objet de cette note est la démonstration du théorème suivant: Prémisse: A est un ensemble F_{σδ}, B est homéomorphe avec A. Thèse: B est un ensemble F_{σδ}.
13
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Le but de cette note est de trouver la solution de problème suivant: Problème: Peut on représenter toute fonction de classe 1 par une différence des deux fonctions semi-continues supérieurement? et de démontrer le théorème general: Théorème: Prémisse: f(x) est une fonction bornée de classe 1 dans un intervalle I. Thèse: Pour tout nombre ϵ > 0 il existe deux fonctions G_1(x), G_2(x) semicontinues supérieurement dans I et telles que: |f(x)-[G_1(x)-G_2(x)]| ≤ ϵ x ⊂ I.
14
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Le but de cette note est de démontrer le théorème suivant: Il existe une décomposition du segment 0 ≤ x ≤ 1 en c ensembles non mesurables, sans points communs, superposables deux à deux par translation (c désigne la puissance du continu).
15
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Le but de cette note est de démontrer: Théorème: Il existe un continu plan non borné décomposable en une somme d'une infinité dénombrable d'ensembles fermés non vides, n'ayant deux à deux aucun point commun. Théorème: Un continu plan non borné ne peut être décomposé en une somme d'une infinité dénombrable de continus n'ayant deux à deux aucun point commun.
18
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Madame Anna Mullikin a démontre le théorème suivant: Théorème: Si M est la somme d'une infinité dénombrable d'ensembles fermes sans points communs deux a deux: M_1,M_2,... dont aucun ne décompose pas (disconnects) un plan S, alors M ne décompose S. Le but de cette note est de donner une nouvelle démonstration de ce théorème.
20
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Théorème: La frontière d'un domaine connexe, détermine par un continue borné est un continu. Le but de cette note est de démontrer qu'on peut supprimer dans cet énoncé le mot "borné".
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.