Fibre expanding systems have been introduced by Denker and Gordin. Here we show the existence of a finite partition for such systems which is fibrewise a Markov partition. Such partitions have direct applications to the Abramov-Rokhlin formula for relative entropy and certain polynomial endomorphisms of ℂ².
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
For a class of quadratic polynomial endomorphisms $f: ℂ^2 → ℂ^2$ close to the standard torus map $(x,y) → (x^2,y^2)$, we show that the Julia set J(f) is homeomorphic to the torus. We identify J(f) as the closure ℛ of the set of repelling periodic points and as the Shilov boundary of the set K(f) of points with bounded forward orbit. Moreover, it turns out that (J(f),f) is a mixing repeller and supports a measure of maximal entropy for f which is uniquely determined as the harmonic measure for K(f).
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We show that the set of conical points of a rational function of the Riemann sphere supports at most one conformal measure. We then study the problem of existence of such measures and their ergodic properties by constructing Markov partitions on increasing subsets of sets of conical points and by applying ideas of the thermodynamic formalism.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW