Splotowe sieci neuronowe są obecnie popularnym narzędziem wykorzystywanym w rozpoznawaniu dźwięków środowiskowych. Na skuteczność ich działania wpływa wiele potencjalnych czynników. Niniejszy referat przedstawia podsumowanie wyników uzyskanych w rozprawie doktorskiej autora w zakresie analizy wrażliwości modeli splotowych na dobierane wartości hiperparametrów. W szczególności zastosowanie techniki dropout okazuje się mieć znaczący wpływ na funkcjonowanie tego typu modeli.
EN
Convolutional neural networks are a popular tool used in environmental sound recognition tasks. Their performance depends on multiple factors. This paper presents a summarized extract from author’s PhD dissertation on analyzing the sensitivity of convolutional models to hyperparameter values. In particular, dropout happens to play an important role in these kinds of models.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.