Synthetic biology is an emerging area of biotechnology for which main applications are in the field of Health and Environment However, it suffers from a lack of adapted CAD tools and methodology in order to fulfill efficiently and quickly the needs of these domains. In this paper, the strong relationship between circuits design in microelectronics and synthetic biology is highlighted. Most of synthesized biodevices behavior can be interpreted and modeled by BioLogic gate. As a consequence, bigger biosystems might be designed using methods and tools borrowed from microelectronics. These similarities lead to an efficient methodology, using microelectronics design flow, tools and methods, which should allow a top-down approach in synthetic biosystem design. The methodology is illustrated on the design of a biosystem (a T-flipflop), using top-down approach and HDL modeling languages. The proposed methods and their evolution prospects are discussed at the end of the paper,
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.