It is common for different types of mathematical structuralism that the conjunction of two statements ( a) mathematics is science about structures and b) mathematics is deductive science) is true, Distinct arguments for this two features of mathematics are exanimated therefore the main concepts (structurality and deductivity) are understood differently, the results are various types of structuralism. We claim that it is possible to establish the way of understood of this two concepts in witeh they are equivalent. We argue that can interpret mathematical structuralism as equivalence: a) mathematics is science about structures if and only, if b) mathematics is deductive science
PL
Wspólne dla różnego typu strukturalizmów matematycznych jest stwierdzenie, że dla matematyki jako nauki prawdziwa jest koniunkcja: a) matematyka jest nauką o strukturach oraz b) matematyka jest nauką dedukcyjną. Przedstawiane są odmienne argumenty na rzecz tych dwóch własności matematyki i różnie rozumiane są pojęcia strukturalności i dedukcyjności, co skutkuje powstawaniem różnego rodzaju strukturalizmów. Twierdzimy, że przy pewnym ustalonym sposobie rozumienia tych pojęć możliwa jest ich równoważność. Argumentujemy na rzecz takiego rozumienia strukturalizmu, które streszcza się w stwierdzeniu: a) matematyka jest nauką o strukturach wtedy i tylko wtedy, gdy b) matematyka jest nauką dedukcyjną.
This is a review of the book Jedność i wielość logik modalnych (The Unity and Diversity of Modal Logics) edited by Marcin Tkaczyk. The book contains discussions of the most recent results of contemporary modal logic, focusing on regular modal logics, epistemic logic, and temporal logic. The book comprises four chapter, each of which deals with selected formal-logical and philosophical problems associated with modal logic.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.