Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
EN
Due to the nonlinear and dynamic nature of stock data, prediction is one of the mostchallenging tasks in the financial market. Nowadays, soft and bio-inspired computing algorithms are used to forecast the stock price. This article assesses the efficiency of thehybrid stock prediction model using the multilayer perceptron (MLP) and cat swarm optimization (CSO) algorithm. The CSO algorithm is a bio-inspired algorithm inspired bythe behavior traits of cats. CSO is employed to find the appropriate value of MLP parameters. Technical indicators calculated from historical data are used as input variablesfor the proposed model. The model’s performance is validated using historical data notused for training. The model’s prediction efficiency is evaluated in terms of MSE, MAPE, RMSE and MAE. The model’s results are compared with other models optimized byvarious bio-inspired algorithms presented in the literature to prove its efficiency. The empirical findings confirm that the proposed CSO-MLP prediction model provides the bestperformance compared to other models taken for analysis.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.