Purpose: Developing structural designs that offer superior vibration properties is still a major challenge, but they stay solid and lightweight simultaneously. Composite faces are frequently used in insulating constructions as an alternative to sheet metal roofs. Rubber overlays have been added to reduce waves' natural frequency and fade time. Design/methodology/approach: The mechanical properties and the natural frequency calculation of the materials that make up the composite structural panels designed for structural applications with the addition of rubber layers were studied in this study. Findings: The results showed the addition of rubber layers with SiO2 nanoparticles with a density of 1180 kg m3, and the optimal decrease (VF = 2.5%) is 38.5% in the natural frequency while at a density of 1210 kg/m3, it is 40.2% in the natural frequency. While the addition of rubber layers with Al2O3 nanoparticles shows a density of 1180 kg/m3, the optimum reduction (VF = 2.5%) is 41% in HF while at a density of 1210 kg/m3 36.8% in an NF 41% during a density of 1210 kg/m3 38.4%. Research limitations/implications: Certain hypotheses were used to apply Kirchhoff's theory to solve the mathematical model of the structure. Practical implications: The work was carried out on the faces of nanocomposites made of SiO2/epoxy and Al2O3/epoxy with different densities and polylactic acid core. The inclusion of nanoparticles as a percentage of the fraction size ranges from 0% to 2.50%. Originality/value: This study's results shed light on the fundamental behaviour of the components that make up the sandwich in the presence of rubber layers.
Purpose: This study introduces a new approximated analytical solution of the free vibration analysis to evaluate the natural frequencies of functionally graded rectangular sandwich plates with porosities. Design/methodology/approach: The kinematic relations are developed based on the classical plate theory (CPT), and the governing differential equation is derived by employing the Rayleigh-Ritz approximate method. The FGM plate is assumed made of an isotropic material that has an even distribution of porosities. The materials properties varying smoothly in the thickness direction only according to the power-law scheme. Findings: The influences of changing the gradient index, porosity distribution, boundary conditions, and geometrical properties on the free vibration characteristics of functionally graded sandwich plates are analysed. Research limitations/implications: A detailed numerical investigation is carried out using the finite element method with the help of ANSYS 2020 R2 software to validate the results of the proposed analytical solution. Originality/value: The results with different boundary conditions show the influence of porosity distribution on the free vibration characteristics of FG sandwich plates. The results indicated a good agreement between the approximated method such as the Rayleigh-Ritz and the finite element method with an error percentage of no more than 5%.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.