Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The purpose of this study was to compare the biomechanical behavior of the custom-made mandibular condyle prosthesis and total TMJ prosthesis. Methods: Three models of one beagle dog, the condyle prosthesis (Model 1, replacing the right condyle only), the TMJ prosthesis (model 2, replacing the whole right TMJ) and the intact TMJ (model 3) were established, and the mechanical responses under muscle forces loading were analyzed using finite element method. Results: Models 1 and 3 had the similar stress distribution on the right disc, which suggested that the condyle prosthesis did not change the disc stress so much when the muscle forces were applied. The stress of the right TMJ prosthesis in Model 2 was larger than both Models 1 and 3, and the stress of the contralateral TMJ reduced by 12% in Model 2. The anterior border of the condyle seemed to be a stress concentration region, not only for the intact condyle, but also for the condyle prosthesis and the total TMJ prosthesis. Conclusions: The total TMJ prosthesis changed the biomechanical balance of the bilateral TMJ. When the condyle prosthesis iss applied, the custom-made profile is recommended.
EN
This paper examines the biomechanical mechanism behind the effect of the invisible aligner technique on tooth movement processes. Methods: To compare the effects of different target positions on tooth movement and the periodontal ligament (PDL), two kinds of aligners were designed to provide displacements of 0.2 mm (Model A) and 0.3 mm (Model B). Different displacements of the maxillary second molar were simulated using the finite element (FE) method. Results: The results of numerical simulations showed that the maximum stress was in the PDL of the distal surface and the palatal surface. The stress of the PDL in Model B was larger than Model A, with the displacement of the second molar 0.027 mm in Model A, by 44.9% lesser than that in Model B. Conclusions: The aligner that provided a displacement of 0.2 mm was more suitable for pushing the second molar backward in the initial stage. During the tooth movement processes, the displacement of the crown was larger than that of the root and the displacement decreased gradually from the crown to the root. In addition, the displacement and rotation of teeth during orthodontic treatment were measured and analysed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.